Similarity-Based Memory Enhanced Joint Entity and Relation Extraction | SpringerLink
Skip to main content

Similarity-Based Memory Enhanced Joint Entity and Relation Extraction

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Abstract

Document-level joint entity and relation extraction is a challenging information extraction problem that requires a unified approach where a single neural network performs four sub-tasks: mention detection, coreference resolution, entity classification, and relation extraction. Existing methods often utilize a sequential multi-task learning approach, in which the arbitral decomposition causes the current task to depend only on the previous one, missing the possible existence of the more complex relationships between them. In this paper, we present a multi-task learning framework with bidirectional memory-like dependency between tasks to address those drawbacks and perform the joint problem more accurately. Our empirical studies show that the proposed approach outperforms the existing methods and achieves state-of-the-art results on the BioCreative V CDR corpus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beltagy, I., Lo, K., Cohan, A.: Scibert: A pretrained language model for scientific text. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. ACL (2019)

    Google Scholar 

  2. Cabot, P.L.H., Navigli, R.: Rebel: Relation extraction by end-to-end language generation. In: Findings of the Association for Computational Linguistics: EMNLP (2021)

    Google Scholar 

  3. Christopoulou, E., Miwa, M., Ananiadou, S.: Connecting the dots: Document-level neural relation extraction with edge-oriented graphs. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. ACL (2019)

    Google Scholar 

  4. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (2019)

    Google Scholar 

  5. Eberts, M., Ulges, A.: An end-to-end model for entity-level relation extraction using multi-instance learning. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume (2021)

    Google Scholar 

  6. Giorgi, J., Bader, G., Wang, B.: A sequence-to-sequence approach for document-level relation extraction. In: Proceedings of the 21st Workshop on Biomedical Language Processing. pp. 10–25 (2022)

    Google Scholar 

  7. Katiyar, A., Cardie, C.: Going out on a limb: Joint extraction of entity mentions and relations without dependency trees. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (2017)

    Google Scholar 

  8. Lee, K., He, L., Lewis, M., Zettlemoyer, L.: End-to-end neural coreference resolution. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (2017)

    Google Scholar 

  9. Li, J., et al.: Biocreative v cdr task corpus: a resource for chemical disease relation extraction (2016)

    Google Scholar 

  10. Li, J., Sun, A., Han, J., Li, C.: A survey on deep learning for named entity recognition. IEEE Trans. on Knowl. and Data Eng. (2022)

    Google Scholar 

  11. Miwa, M., Sasaki, Y.: Modeling joint entity and relation extraction with table representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (2014)

    Google Scholar 

  12. Shen, Y., Ma, X., Tang, Y., Lu, W.: A trigger-sense memory flow framework for joint entity and relation extraction. In: Proceedings of the web conference (2021)

    Google Scholar 

  13. Soares, L.B., Fitzgerald, N., Ling, J., Kwiatkowski, T.: Matching the blanks: Distributional similarity for relation learning. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (2019)

    Google Scholar 

  14. Tan, Q., Xu, L., Bing, L., Ng, H.T.: Revisiting docred-addressing the overlooked false negative problem in relation extraction. arXiv preprint arXiv:2205.12696 (2022)

  15. Wadden, D., Wennberg, U., Luan, Y., Hajishirzi, H.: Entity, relation, and event extraction with contextualized span representations. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (2019)

    Google Scholar 

  16. Yao, Y., et al.: DocRED: a large-scale document-level relation extraction dataset. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (2019)

    Google Scholar 

Download references

Acknowledgements

The research was conducted under the Implementation Doctorate programme of Polish Ministry of Science and Higher Education and also partially funded by Department of Artificial Intelligence, Wroclaw Tech and by the European Union under the Horizon Europe grant OMINO (grant number 101086321). It was also partially co-funded by the European Regional Development Fund within Measure 1.1. “Enterprise R &D Projects”, Sub-measure 1.1.1. “Industrial research and development by companies” as part of The Operational Programme Smart Growth 2014-2020, support contract no. POIR.01.01.01-00-0876/20-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Witold Kościukiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kościukiewicz, W., Wójcik, M., Kajdanowicz, T., Gonczarek, A. (2023). Similarity-Based Memory Enhanced Joint Entity and Relation Extraction. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 14074. Springer, Cham. https://doi.org/10.1007/978-3-031-36021-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36021-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36020-6

  • Online ISBN: 978-3-031-36021-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics