Cross-Border Technology Integration in the Field of Artificial Intelligence Based on Neural Network Algorithm | SpringerLink
Skip to main content

Cross-Border Technology Integration in the Field of Artificial Intelligence Based on Neural Network Algorithm

  • Conference paper
  • First Online:
6GN for Future Wireless Networks (6GN 2022)

Abstract

In recent years, with the continuous development of my country's social science and technology level, people's research and exploration in the field of cross-border technology AI has become more and more in-depth, and the society's demand for cross-border technology integration and application in the field of artificial intelligence has also increased. Gradually increasing, only by investing more research and analysis, can there be greater breakthroughs and development in the application of cross-border technology AI. Based on the neural network algorithm, this paper takes the key point of the field of artificial intelligence as the starting point, and explores the application of cross-border technology AI from a new perspective. This paper briefly introduces the current cross-border technology AI and its development trend, studies the existing cross-border technology integration applications in the field of artificial intelligence, and conducts a series of experiments to prove the artificial intelligence based on neural network algorithm. Cross-border technology integration in the field of intelligence has specific advantages. The final results of the research show that the fusion coefficient of experiment 5 is 93, and the matching degree of cross-border technology fusion in the field of artificial intelligence is 98.7%. Through the comparison of experimental data, it is found that the matching degree of cross-border technology AI has always maintained a stable level, that is, it has remained around 99%. It shows that the matching degree of cross-border technology fusion in the field of artificial intelligence does not change with the change of the fusion coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tarasov, I., Potekhin, D.: Calculation of activation functions in FPGA-based neuroprocessors using the cordic algorithm. In: Jordan, V., Tarasov, I., Faerman, V. (eds.) HPCST 2021. CCIS, vol. 1526, pp. 13–20. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-94141-3_2

    Chapter  Google Scholar 

  2. Jenaibi, B.A., Mansoori, A.A.: Information and communications technology is merging data science and advanced artificial intelligence towards the core of knowledge based society. 22(5), 152–213 (2022)

    Google Scholar 

  3. Hedayat, B., Ahmadi, M.E., Nazerian, H., et al.: Feasibility of simultaneous application of fuzzy neural network and TOPSIS integrated method in potential mapping of lead and zinc mineralization in Isfahan-Khomein metallogeny zone. Open J. Geol. 12(3), 19 (2022)

    Google Scholar 

  4. Nazir, A., Shabbir, G., Hussain, F., et al.: A note on classification of dust static plane symmetric space-times via proper curvature collineations inf (R)gravity. Int. J. Geomet. Methods Mod. Phys. 19(6), 639–723 (2022)

    Google Scholar 

  5. Hartley, K., Andújar, A.: Smartphones and learning: An extension of M-learning or a distinct area of inquiry. Educ. Sci. 12, 235–265 (2022)

    Google Scholar 

  6. Abdelbasset, W.K., Elsayed, S.H.: Study on cross-border fresh order and transport model based on profit maximization principle. 5(15), 329–352 (2021)

    Google Scholar 

  7. Błasik, M.: Numerical method for the one phase 1D fractional stefan problem supported by an artificial neural network. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) FTC 2020. AISC, vol. 1288, pp. 568–587. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-63128-4_44

    Chapter  Google Scholar 

  8. Saptalakar, B.K., Latte, M.V.: Effective reflection removal system for cognitive based convolutional neural networks. 55(6), 522–533 (2022)

    Google Scholar 

  9. Satish, R., Kantarao, P., Vaisakh, K.: A new algorithm for harmonic impacts with renewable DG and non-linear loads in smart distribution networks. Technol. Econ. Smart Grids Sustain. Energy 7(1), 1–19 (2022)

    Article  Google Scholar 

  10. Herrmann, T., Pfeiffer, S.: Keeping the organization in the loop: a socio-technical extension of human-centered artificial intelligence. AI Society, 1–20 (2022)

    Google Scholar 

  11. Dehestani, H., Ordokhani, Y.: Numerical evaluation of variable-order fractional nonlinear Volterra functional-integro-differential equations with non-singular kernel derivative. Iranian J. Sci. Technol. Trans. A Sci. 46(2), 405–419 (2022). https://doi.org/10.1007/s40995-022-01278-6

    Article  MathSciNet  Google Scholar 

  12. Hassan, A.S., Othman, E.S.A., Bendary, F.M., et al.: Improving the techno-economic pattern for distributed generation-based distribution networks via nature-inspired optimization algorithms. Technol. Econ. Smart Grids Sustain. Energy 7(1), 1–25 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheqing Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qiu, Y., Tang, Z., Luo, Y. (2023). Cross-Border Technology Integration in the Field of Artificial Intelligence Based on Neural Network Algorithm. In: Li, A., Shi, Y., Xi, L. (eds) 6GN for Future Wireless Networks. 6GN 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 505. Springer, Cham. https://doi.org/10.1007/978-3-031-36014-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36014-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36013-8

  • Online ISBN: 978-3-031-36014-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics