Abstract
Tsunamis and earthquakes have a great impact in human lives, infrastructures and economy. Although preventing tsunamis from occurring is impossible, minimizing their negative effects is in our hands. The aim of the Intelligent Transportation System (ITS) proposed in this paper is to provide safer routes for emergency and rescue vehicles. This system must consider the information regarding the tsunami alert system and the road state combined with the vehicle performance. Complex Event Processing (CEP) technology allows us to gather and process the information provided by authorities to establish the alert level. A Fuzzy Inference System (FIS) can be used to consider the uncertain regarding the road-status related concepts, such as, flood, objects and alert levels, and to assist authorities to determine whether roads are accessible. The information obtained through these technologies can then be used in a Colored Petri Net (CPN) model in order to obtain safer routes. This proposal has been applied to the Spanish city of Cádiz, due to its population density and its location in a small peninsula close to an active tectonic rift.
This work was supported in part by the Spanish Ministry of Science and Innovation and the European Union FEDER Funds under grants PID2021-122215NB-C32 and PID2021-122215NB-C33.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
This figure has been designed using images from Flaticon.com.
- 2.
Designed using the mapbox by Raúl Sánchez, elDiario.es (CC BY-NC 4.0).
- 3.
Bindings are variable assignments, considering the tokens on the precondition places, and the variables labeling the arcs.
References
CPN Tools home page (2023). http://www.cpntools.org/.
Esper - Complex Event Processing (2023). http://www.espertech.com/esper/.
Afandi, N., Mayasari, Z.: An evacuation route in Bengkulu city based on fuzzy Dijkstra algorithm. J. Phys: Conf. Ser. 1863, 012007 (2021). https://doi.org/10.1088/1742-6596/1863/1/012007
Boubeta-Puig, J., Ortiz, G., Medina-Bulo, I.: MEdit4CEP: a model-driven solution for real-time decision making in SOA 2.0. Knowl.-Based Syst. 89, 97–112 (2015). https://doi.org/10.1016/j.knosys.2015.06.021
Brazález, E., Macià, H., Díaz, G., Valero, V., Boubeta-Puig, J.: PITS: an intelligent transportation system in pandemic times. Eng. Appl. Artif. Intell. 114, 105154 (2022). https://doi.org/10.1016/j.engappai.2022.105154
Cantavella, J.V., Gaite, B., González, C., Naveiras, F., Ros, E.: Plan Estatal de Protección Civil ante el riesgo de maremotos. Edición comentada. Catálogo de publicaciones de la Administración General del Estado. https://www.ign.es/web/resources/acercaDe/libDigPub/Plan-Estatal-Maremotos.pdf (2021)
Carathedathu, M., Jayaraj, N., Vaidyanathan, S.: Artificially intelligent tsunami early warning system, pp. 39–44 (2010). https://doi.org/10.1109/UKSIM.2010.16
Chester, D.K.: The 1755 Lisbon earthquake. Prog. Phys. Geogr.: Earth Environ. 25(3), 363–383 (2001). https://doi.org/10.1177/030913330102500304
Díaz, G., Macià, H., Valero, V., Boubeta-Puig, J., Cuartero, F.: An intelligent transportation system to control air pollution and road traffic in cities integrating CEP and colored petri nets. Neural Comput. Appl. 32(2), 405–426 (2018). https://doi.org/10.1007/s00521-018-3850-1
Jeberson Retna Raj, R., Sasipraba, T.: Disaster management system based on GIS web services. In: Recent Advances in Space Technology Services and Climate Change 2010 (RSTS & CC-2010), pp. 252–261 (2010). https://doi.org/10.1109/RSTSCC.2010.5712855
Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use, vol. 2. Springer-Verlag, London (1995)
Jensen, K., Kristensen, L.M.: Coloured Petri Nets: Modelling and Validation of Concurrent Systems, 1st edn. Springer, Cham (2009)
Lay, T., et al.: The great Sumatra-Andaman earthquake of 26 December 2004. Science 308(5725), 1127–1133 (2005). https://doi.org/10.1126/science.1112250
Macià, H., Díaz, G., Valero, V., Valero, E., Brazélez, E., Boubeta-Puig, J.: greenITS: a proposal to compute low-pollution routes. In: 17th International Conference on Future Networks and Communications / 19th International Conference on Mobile Systems and Pervasive Computing / 12th International Conference on Sustainable Energy Information Technology, vol. 203, pp. 334–341. Elsevier, Niagara Falls (2022). https://doi.org/10.1016/j.procs.2022.07.042
Mamdani, E., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Mach. Stud. 7(1), 1–13 (1975). https://doi.org/10.1016/S0020-7373(75)80002-2
Matias, L.M., Cunha, T., Annunziato, A., Baptista, M.A., Carrilho, F.: Tsunamigenic earthquakes in the Gulf of Cadiz: fault model and recurrence. Nat. Hazards Earth Syst. Sci. 13(1), 1–13 (2013). https://doi.org/10.5194/nhess-13-1-2013
Méndez, M., Ibias, A., Núñez, M.: Using deep learning to detect anomalies in traffic flow. In: Nguyen, N.T., Tran, T.K., Tukayev, U., Hong, T.P., Trawiński, B., Szczerbicki, E. (eds.) Intelligent Information and Database Systems, pp. 299–312. Springer International Publishing, Cham (2022)
Mosavi, A., Ozturk, P., Chau, K.W.: Flood prediction using machine learning models: literature review. Water (Switzerland) 10(11), 1536 (2018). https://doi.org/10.3390/w10111536
Naddaf, M.: Turkey-Syria earthquake: what scientists know. Nature 614(6), 398–399 (2023). https://doi.org/10.1038/d41586-023-00364-y
Oliphant, T.P., Jones, P.: SciPy - Skfuzzy (2023). https://pythonhosted.org/scikit-fuzzy/
Omira, R., Baptista, M., Miranda, J.: Evaluating Tsunami impact on the Gulf of Cadiz Coast (Northeast Atlantic). Pure Appl. Geophys. 168(6–7), 1033–1043 (2011). https://doi.org/10.1007/s00024-010-0217-7
Öztaysi, B., Behret, H., Kabak, Ö., Sarı, I.U., Kahraman, C.: Fuzzy Inference Systems for Disaster Response. In: Vitoriano, B., Montero, J., Ruan, D. (eds) Decision Aid Models for Disaster Management and Emergencies, pp. 75–94. Atlantis Press, Paris (2013). https://doi.org/10.2991/978-94-91216-74-9_4
Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall PTR, Upper Saddle River (1981)
Sheu, J.B.: An emergency logistics distribution approach for quick response to urgent relief demand in disasters. Transp. Res. Part E: Logistics Transp. Rev. 43, 687–709 (2007). https://doi.org/10.1016/j.tre.2006.04.004
Tadano, K., Maeno, Y., Carnevali, L.: Road repair sequencing for disaster victim evacuation. Adv. Intell. Syst. Comput. 528, 401–412 (2017). https://doi.org/10.1007/978-3-319-47253-9_37
Tsai, C.H., Chen, C.W., Chiang, W.L., Lin, M.L.: Application of geographic information system to the allocation of disaster shelters via fuzzy models engineering computations. Eng. Comput. 25, 86–100 (2008). https://doi.org/10.1108/02644400810841431
Wächter, J., et al.: Development of tsunami early warning systems and future challenges. Nat. Hazards Earth Syst. Sci. 12(6), 1923–1935 (2012). https://doi.org/10.5194/nhess-12-1923-2012
Whyte, J., Fulton, F., White, A., Putley, A., Paisley, B., Robinson, B.: Realising network intelligence through master data exploitation and dynamic data modelling. CIRED-Open Access Proc. J. 2017, 2852–2856 (2017). https://doi.org/10.1049/oap-cired.2017.0112
Yan, R., Dunnett, S., Tolo, S., Andrews, J.: A petri net methodology for modeling the resilience of nuclear power plants, p. 2426–2432 (2021). https://doi.org/10.3850/978-981-18-2016-8_109-cd
Zadeh, L.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965). https://doi.org/10.1016/S0019-9958(65)90241-X
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Díaz, G., Macià, H., Brazález, E., Boubeta-Puig, J., Ruiz, M.C., Valero, V. (2023). An Intelligent Transportation System for Tsunamis Combining CEP, CPN and Fuzzy Logic. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 14073. Springer, Cham. https://doi.org/10.1007/978-3-031-35995-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-35995-8_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-35994-1
Online ISBN: 978-3-031-35995-8
eBook Packages: Computer ScienceComputer Science (R0)