Make It Short: A Pilot Study on an Adaptive Nutrition Tracking App | SpringerLink
Skip to main content

Make It Short: A Pilot Study on an Adaptive Nutrition Tracking App

  • Conference paper
  • First Online:
Human-Computer Interaction (HCII 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14014))

Included in the following conference series:

  • 794 Accesses

Abstract

Over the years, obesity has been rising. This does not only lead to a higher prevalence of non-communicable diseases that affect the health of an individual, but also high costs for society. Although existing research in the field of mobile health suggests that mobile nutrition tracking applications can be considered a well-accepted and low-cost intervention, current nutrition apps are struggling in multiple areas like time-intense food tracking, incorrect reporting by users, and neglect of aspects such as in variety. For this reason, this study has iteratively developed a mobile app that allows users to decide for themselves how precisely, and therefore, how time-consuming, they want to track their diets. In a final study, it was evaluated how the new tracking method was used, perceived, and accepted by users. Good ratings were observed for usability as well as a large majority of food records accompanied with extensive details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 18589
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization: Obesity and overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Accessed 23 Dec 2020

  2. OECD and European Union: Health at a Glance: Europe 2020. OECD Publishing, Paris (2020)

    Book  Google Scholar 

  3. Robert Koch Institute: Overweight and obesity. https://www.rki.de/EN/Content/Health_Monitoring/Main_Topics/Overweight_Obesity/obesity_node.html. Accessed 24 Dec 2020

  4. Robertson, A.: Food and health in Europe: a new basis for action. WHO regional publications. European series (2004)

    Google Scholar 

  5. Sotos-Prieto, M., et al.: Changes in diet quality scores and risk of cardiovascular disease among US men and women. Circulation 132(23), 2212–2219 (2015)

    Article  Google Scholar 

  6. World Health Organization: Food and health in Europe: a new basis for action (WHO Regional Publications, European Series, No. 96). World Health Organization, Copenhagen, Denmark (2004)

    Google Scholar 

  7. Yates, N., et al.: The economic burden of obesity in Germany: results from the population-based KORA studies. Obes. Facts 9(6), 397–409 (2016)

    Article  Google Scholar 

  8. Herforth, A., Arimond, M., Álvarez-Sánchez, C., Coates, J., Christianson, K., Muehlhoff, E.: “A Global Review of Food-Based Dietary Guidelines,” (in eng). Adv. Nutr. 10(4), 590–605 (2019). https://doi.org/10.1093/advances/nmy130

    Article  Google Scholar 

  9. Keller, I., Lang, T.: “Food-based dietary guidelines and implementation: lessons from four countries–Chile, Germany, New Zealand and South Africa,” (in eng). Public Health Nutr. 11(8), 867–874 (2008). https://doi.org/10.1017/s1368980007001115

    Article  Google Scholar 

  10. Payne, H.E., Lister, C., West, J.H., Bernhardt, J.M.: Behavioral functionality of mobile apps in health interventions: a systematic review of the literature. JMIR Mhealth Uhealth 3(1), e3335 (2015)

    Article  Google Scholar 

  11. Perez, S.: Flurry Examines App Loyalty: News & Communication Apps Top Charts, Personalization Apps See High Churn. TechCrunch. https://techcrunch.com/2012/10/22/flurry-examines-app-loyalty-news-communication-apps-top-charts-personalization-apps-see-high-churn/. Accessed 20 Oct 2021

  12. Thompson, F.E., Subar, A.F.: Dietary assessment methodology. In: Coulston, A.M., Boushey, C.J., Ferruzzi, M.G., Delahanty, L.M. (eds.) Nutrition in the Prevention and Treatment of Disease, ch. 1, p. 1072. Academic Press (2017)

    Google Scholar 

  13. YAZIO: YAZIO Calorie Counter & Intermittent Fasting App. https://play.google.com/store/apps/details?id=com.yazio.android&hl. Accessed 18 Oct 2022

  14. MyFitnessPal Inc.: Calorie Counter - MyFitnessPal. https://play.google.com/store/apps/details?id=com.myfitnesspal.android. Accessed 18 Oct 2022

  15. Chen, J., Berkman, W., Bardouh, M., Ng, C.Y.K., Allman-Farinelli, M.: The use of a food logging app in the naturalistic setting fails to provide accurate measurements of nutrients and poses usability challenges. Nutrition 57, 208–216 (2019)

    Article  Google Scholar 

  16. Luo, Y., Liu, P., Choe, E.K.: Co-Designing food trackers with dietitians: Identifying design opportunities for food tracker customization. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–13 (2019)

    Google Scholar 

  17. Rusin, M., Årsand, E., Hartvigsen, G.: Functionalities and input methods for recording food intake: a systematic review. Int. J. Med. Inform. 82(8), 653–664 (2013)

    Article  Google Scholar 

  18. Turner-McGrievy, G.M., Beets, M.W., Moore, J.B., Kaczynski, A.T., Barr-Anderson, D.J., Tate, D.F.: Comparison of traditional versus mobile app self-monitoring of physical activity and dietary intake among overweight adults participating in an mHealth weight loss program. J. Am. Med. Inform. Assoc. 20(3), 513–518 (2013)

    Article  Google Scholar 

  19. Franco, R.Z., Fallaize, R., Lovegrove, J.A., Hwang, F.: Popular nutrition-related mobile apps: a feature assessment. JMIR Mhealth Uhealth 4(3), e85 (2016)

    Article  Google Scholar 

  20. Hingle, M., Patrick, H.: There are thousands of apps for that: navigating mobile technology for nutrition education and behavior. J. Nutrition Educ. Behav. 48(3), 213–218. e1 (2016)

    Google Scholar 

  21. Cox, A.M., McKinney, P., Goodale, P.: Food logging: an information literacy perspective. Aslib J. Inform. Manage. (2017)

    Google Scholar 

  22. Lupton, D.: ‘I just want it to be done, done, done!’ Food tracking apps, affects, and agential capacities. Multimodal Technol. Interact. 2(2), 29 (2018)

    Article  MathSciNet  Google Scholar 

  23. Cordeiro, F., et al.: Barriers and negative nudges: exploring challenges in food journaling, (in eng). Proc. SIGCHI Conf. Hum. Factor Comput. Syst. 2015, 1159–1162 (2015). https://doi.org/10.1145/2702123.2702155

    Article  Google Scholar 

  24. König, L.Ṃ., Attig, C., Franke, T., Renner, B.: Barriers to and facilitators for using nutrition apps: systematic review and conceptual framework, (in eng). JMIR Mhealth Uhealth 9(6) (2021). https://doi.org/10.2196/20037

  25. Joint, F., Organization, W.H.: Preparation and use of food-based dietary guidelines. World Health Organization (1998)

    Google Scholar 

  26. Herforth, A., Arimond, M., Álvarez-Sánchez, C., Coates, J., Christianson, K., Muehlhoff, E.: A global review of food-based dietary guidelines. Adv. Nutr. 10(4), 590–605 (2019)

    Article  Google Scholar 

  27. Bechthold, A., Wendt, I., Laubach, B., Mayerböck, C., Oberritter, H., Nöthlings, U.: Consumers’ awareness of food-based dietary guidelines in Germany. Results of a representative survey. Ernahrungs Umschau 64(7), 112–119 (2017)

    Google Scholar 

  28. Brug, J., Glanz, K., Van Assema, P., Kok, G., Van Breukelen, G.J.: The impact of computer-tailored feedback and iterative feedback on fat, fruit, and vegetable intake. Health Educ. Behav. 25(4), 517–531 (1998)

    Article  Google Scholar 

  29. Bichler, M.: Design science in information systems research. Wirtschaftsinformatik 48(2), 133–135 (2006). https://doi.org/10.1007/s11576-006-0028-8

    Article  Google Scholar 

  30. Calvert, C., Cade, J., Barrett, J.H., Woodhouse, A., Group, U.S.: Using cross-check questions to address the problem of mis-reporting of specific food groups on Food Frequency Questionnaires. Eur. J. Clin. Nutri. 51(10), 708–712 (1997). https://doi.org/10.1038/sj.ejcn.1600480

  31. Boren, T., Ramey, J.: Thinking aloud: reconciling theory and practice. IEEE Trans. Prof. Commun. 43(3), 261–278 (2000)

    Article  Google Scholar 

  32. Deutsche Gesellschaft für Ernährung "DGE-Ernährungskreis." https://www.dge.de/ernaehrungspraxis/vollwertige-ernaehrung/ernaehrungskreis/. Accessed 18 Oct 2022

  33. Oberritter, H., Schäbethal, K., Von Ruesten, A., Boeing, H.: The DGE nutrition circle—presentation and basis of the food-related recommendations from the German Nutrition Society (DGE). Ernahrungs Umschau 60(2), 24–29 (2013)

    Google Scholar 

  34. Young, L.R., Nestle, M.: Portion sizes in dietary assessment: issues and policy implications. Nutr. Rev. 53(6), 149–158 (1995)

    Article  Google Scholar 

  35. Bundeszentrum für Ernährung (BZfE). Portionsgröße - gemessen mit der eigenen Hand. https://www.bzfe.de/portionsgroesse-gemessen-mit-der-eigenen-hand/. Accessed 18 Oct 2022

  36. Minich, D.M.: “A review of the science of colorful, plant-based food and practical strategies for” eating the rainbow. J. Nutrition Metabol. 2019 (2019)

    Google Scholar 

  37. Sandborg, J., et al.: Participants’ engagement and satisfaction with a smartphone app intended to support healthy weight gain, diet, and physical activity during pregnancy: Qualitative study within the HealthyMoms trial. JMIR Mhealth Uhealth 9(3), e26159 (2021)

    Article  Google Scholar 

  38. Zhao, Z., Arya, A., Orji, R., Chan, G.: Effects of a personalized fitness recommender system using gamification and continuous player modeling: system design and long-term validation study. JMIR Ser. Games 8(4), e19968 (2020)

    Article  Google Scholar 

  39. Utz, C., Degeling, M., Fahl, S., Schaub, F., Holz, T.: (Un) informed consent: studying GDPR consent notices in the field. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 973–990 (2019)

    Google Scholar 

  40. Lau, R.R., Hartman, K.A., Ware, J.E.: Health as a value: methodological and theoretical considerations. Health Psychol. 5(1), 25 (1986)

    Article  Google Scholar 

  41. Brooke, J.: SUS: a quick and dirty usability scale. In: Jordan, P.W.(ed.) Usability Evaluation in Industry, pp. 189–194 CRC Press (1996)

    Google Scholar 

  42. Schrepp, M., Hinderks, A., Thomaschewski, J.: Applying the User Experience Questionnaire (UEQ) in different evaluation scenarios. In: Marcus, A. (ed.) DUXU 2014. LNCS, vol. 8517, pp. 383–392. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07668-3_37

    Chapter  Google Scholar 

  43. Venkatesh, V., Bala, H.: Technology acceptance model 3 and a research agenda on interventions. Decis. Sci. 39(2), 273–315 (2008). https://doi.org/10.1111/j.1540-5915.2008.00192.x

    Article  Google Scholar 

  44. World Health Organization: A healthy lifestyle - WHO recommendations. https://www.who.int/europe/news-room/fact-sheets/item/a-healthy-lifestyle---who-recommendations. Accessed 3 Feb 2023

  45. Bangor, A., Kortum, P., Miller, J.: Determining what individual SUS scores mean: adding an adjective rating scale. J. Usabil. Stud. 4(3), 114–123 (2009)

    Google Scholar 

  46. Laugwitz, B., Held, T., Schrepp, M.: Construction and evaluation of a user experience questionnaire. In: Holzinger, A. (eds.) HCI and Usability for Education and Work. USAB 2008. LNCS, vol. 5298. Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89350-9_6

  47. Ferrara, G., Kim, J., Lin, S., Hua, J., Seto, E.: A focused review of smartphone diet-tracking apps: usability, functionality, coherence with behavior change theory, and comparative validity of nutrient intake and energy estimates. JMIR Mhealth Uhealth 7(5), e9232 (2019)

    Article  Google Scholar 

  48. Nawrot, P., Jordan, S., Eastwood, J., Rotstein, J., Hugenholtz, A., Feeley, M.: Effects of caffeine on human health. Food Addit. Contam. 20(1), 1–30 (2003)

    Article  Google Scholar 

  49. Room, R., Babor, T., Rehm, J.: Alcohol and public health. Lancet 365(9458), 519–530 (2005)

    Article  Google Scholar 

  50. Oswald, M.E., Grosjean, S.: Confirmation bias. Cognitive Illusions: A Handbook on Fallacies and Biasesi Thinking, Judgement and Memory, vol. 79, p. 83 (2004)

    Google Scholar 

  51. Sedgwick, P.: Non-response bias versus response bias. BMJ 348 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Lurz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lurz, M., Prommegger, B., Böhm, M., Krcmar, H. (2023). Make It Short: A Pilot Study on an Adaptive Nutrition Tracking App. In: Kurosu, M., Hashizume, A. (eds) Human-Computer Interaction. HCII 2023. Lecture Notes in Computer Science, vol 14014. Springer, Cham. https://doi.org/10.1007/978-3-031-35572-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35572-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35571-4

  • Online ISBN: 978-3-031-35572-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics