Forecasting of COVID-19 Epidemic Process in Ukraine and Neighboring Countries by Gradient Boosting Method | SpringerLink
Skip to main content

Forecasting of COVID-19 Epidemic Process in Ukraine and Neighboring Countries by Gradient Boosting Method

  • Conference paper
  • First Online:
Information Technology for Education, Science, and Technics (ITEST 2022)

Abstract

The new coronavirus has changed the life of the planet and continues to spread around the world. Mathematical modeling allows the development of effective scientifically substantiated preventive and anti-epidemic measures. Machine learning methods have the highest accuracy when constructing the predicted incidence of infectious diseases. In this work, a model of gradient boosting is built to calculate the predicted incidence of COVID-19. To investigate epidemic process in Ukraine, we have built simulation model for Ukraine and its neighbors: Belarus, Hungary, Moldova, Poland, Romania, Russia, Slovakia. To verify the model, real data on the incidence of coronavirus were used. These countries were chosen because they have different dynamics of the epidemic process, different control measures and influenced the dynamics of COVID-19 epidemic process in Ukraine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 25167
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 31459
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lu, X., Xing, Y., Wong, G.W.: COVID-19: lessons to date from China. Arch. Dis. Child. 105(12), 1146–1150 (2020). https://doi.org/10.1136/archdischild-2020-319261

    Article  Google Scholar 

  2. Izonin, I., et al.: Predictive modeling based on small data in clinical medicine: RBF-based additive input-doubling method. Math. Biosci. Eng. 18(3), 2599–2613 (2021). https://doi.org/10.3934/mbe.2021132

    Article  MATH  Google Scholar 

  3. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. A: Math. Phys. Eng. Sci. 115(772), 700–721 (1927). https://doi.org/10.1098/rspa.1927.0118

    Article  MATH  Google Scholar 

  4. ud Din, R., Algehyne, E.A.: Mathematical analysis of COVID-19 by using SIR model with convex incidence rate. Results Phys. 23, 103970 (2021). https://doi.org/10.1016/j.rinp.2021.103970

  5. Ajbar, A., Alqahtani, R.T., Boumaza, M.: Dynamics of an SIR-based COVID-19 model with linear incidence rate, nonlinear removal rate, and public awareness. Front. Phys. 9, 634251 (2021). https://doi.org/10.3389/fphy.2021.634251

    Article  Google Scholar 

  6. Mwalili, S., Kimathi, M., Ojiambo, V., Gathungu, D., Mbogo, R.: SEIR model for COVID-19 dynamics incorporating the environment and social distancing. BMC. Res. Notes 13, 352 (2020). https://doi.org/10.1186/s13104-020-05192-1

    Article  Google Scholar 

  7. Lopez, L., Rodo, X.: A modified SEIR model to predict the COVID-19 outbreak in Spain and Italy: simulating control scenarios and multi-scale epidemics. Results Phys. 21, 103746 (2021). https://doi.org/10.1016/j.rinp.2020.103746

    Article  Google Scholar 

  8. Moein, S., et al.: Inefficiency of SIR models in forecasting COVID-19 epidemic: a case study of Isfahan. Sci. Rep. 11, 4725 (2021). https://doi.org/10.1038/s41598-021-84055-6

    Article  Google Scholar 

  9. Moroz, O., Stepashko, V.: Case study of the Ukraine Covid epidemy process using combinatorial-genetic method. In: 2020 IEEE 15th International Conference on Computer Sciences and Information Technologies, pp. 17–20 (2020). https://doi.org/10.1109/CSIT49958.2020.9322000

  10. Karath, K.: Covid-19: how does Belarus have one of the lowest death rates in Europe? BMJ 370 (2020). https://doi.org/10.1136/bmj.m3543

  11. Galvan, V., Quarleri, J.: An evaluation of the SARS-CoV-2 epidemic 16 days after the end of social confinement in Hungary. GeroScience 42(5), 1221–1223 (2020). https://doi.org/10.1007/s11357-020-00237-6

    Article  Google Scholar 

  12. Mavragani, A.: Tracking COVID-19 in Europe: infodemiology approach. JMIR Public Health Surveill. 6(2), e18941 (2020). https://doi.org/10.2196/18941

    Article  Google Scholar 

  13. Chmielik, E., et al.: COVID-19 autopsies: a case series from Poland. Pathobiology 88(1), 78–87 (2021). https://doi.org/10.1159/000512768

    Article  Google Scholar 

  14. Dascalu, S.: The successes and failures of the initial COVID-19 pandemic response in Romania. Front. Public Health 8, 344 (2020). https://doi.org/10.3389/fpubh.2020.00344

    Article  Google Scholar 

  15. Lancet, T.: Salient lessons from Russia’s COVID-19 outbreak. The Lancet 395(10239), 1739 (2020). https://doi.org/10.1016/S0140-6736(20)31280-0

    Article  Google Scholar 

  16. Holt, E.: COVID-19 lockdown of Roma settlements in Slovakia. Lancet Infect. Dis. 20(6), 659 (2020)

    Article  Google Scholar 

  17. Nechyporenko, A.S., et al.: Comparative characteristics of the anatomial structure of the ostiomeatal complex obtained by 3D modeling. In: Proceedings of the 2020 IEEE International Conference on Problems of Infocommunications Science and Technology (PIC S and T 2020), pp. 407–411 (2021). https://doi.org/10.1109/PICST51311.2020.9468111

  18. Davidich, N., et al.: Monitoring of urban freight flows distribution considering the human factor. Sustain. Cities Soc. 75, 103168 (2021). https://doi.org/10.1016/j.scs.2021.103168

    Article  Google Scholar 

  19. Borysenko, V., Kondratenko, G., Sidenko, I., Kondratenko, Y.: Intelligent forecasting in multi-criteria decision-making. In: CEUR Workshop Proceedings, vol. 2608, pp. 966–979 (2020)

    Google Scholar 

  20. Comito, C., Pizzuti, C.: Artificial intelligence for forecasting and diagnosing COVID-19 pandemic: a focused review. Artif. Intell. Med. 128, 102286 (2022). https://doi.org/10.1016/j.artmed.2022.102286

    Article  Google Scholar 

  21. Boyko, D., et al.: The concept of decisions support system to mitigate the COVID-19 pandemic consequences based on social and epidemic process intelligent analysis. In: CEUR Workshop Proceedings, vol. 3003, pp. 55–64 (2021)

    Google Scholar 

Download references

Acknowledgement

The study was funded by the Ministry of Education and Science of Ukraine in the framework of the research project 0121U109814 on the topic “Sociological and mathematical modeling of the effectiveness of managing social and epidemic processes to ensure the national security of Ukraine” [21].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmytro Chumachenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chumachenko, D., Chumachenko, T., Meniailov, I., Muradyan, O., Zholtkevych, G. (2023). Forecasting of COVID-19 Epidemic Process in Ukraine and Neighboring Countries by Gradient Boosting Method. In: Faure, E., Danchenko, O., Bondarenko, M., Tryus, Y., Bazilo, C., Zaspa, G. (eds) Information Technology for Education, Science, and Technics. ITEST 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 178. Springer, Cham. https://doi.org/10.1007/978-3-031-35467-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35467-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35466-3

  • Online ISBN: 978-3-031-35467-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics