Comparing User Perspectives in a Virtual Reality Cultural Heritage Environment | SpringerLink
Skip to main content

Comparing User Perspectives in a Virtual Reality Cultural Heritage Environment

  • Conference paper
  • First Online:
Advanced Information Systems Engineering (CAiSE 2023)

Abstract

Virtual reality enables the creation of personalized user experience that brings together people of different cultures and ethnicity. We consider a novel concept of virtual reality innovation in museums, which is cognitively grounded and supported by data and their semantics, to enable users sharing their experiences, as well as to take the perspective of other users, with the ultimate goal of increasing social cohesion. The implementation of this scenario requires an autonomous artificial system that detects emotions and values from a dialogue involving museum visitors who express their personal point of view, listen to those from other visitors, and possibly take the perspective of others.

An important feature of this system is the ability of detecting similarity and dissimilarity between user perspectives expressed in speech, when exposed to artworks. This ability helps defining an effective strategy for sharing diverse user perspectives for increasing social cohesion. Moreover, it enables an unbiased quantification of the success of the interaction in terms of change in the user perspective. Based on results from previous work, we employ the Ekman’s emotion model and Haidt’s moral value model to extract emotional and moral value profiles from user descriptions of artworks. We propose a novel method for measuring the similarity between user perspectives by comparing emotional and moral value profiles. Our results show that the employment of unsupervised text classification models is a promising research direction for this task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8579
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10724
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    SPICE: Social Cohesion, Participation and Inclusion through Cultural Engagement – EC Grant Agreement number 870811.

  2. 2.

    The Atlas of Emotions developed from a revised version of Ekman’s Basic Emotions theory is available here: https://atlasofemotions.org/.

  3. 3.

    All methods take as input text documents, which can be generated by a speech-to-text tool.

References

  1. Acheampong, F.A., Nunoo-Mensah, H., Chen, W.: Transformer models for text-based emotion detection: a review of BERT-based approaches. Artif. Intell. Rev. 54(8), 5789–5829 (2021)

    Article  Google Scholar 

  2. Ahn, S.J., Le, A.M.T., Bailenson, J.: The effect of embodied experiences on self-other merging, attitude, and helping behavior. Media Psychol. 16(1), 7–38 (2013)

    Article  Google Scholar 

  3. Alm, E.C.O.: Affect in* text and speech. University of Illinois at Urbana-Champaign (2008)

    Google Scholar 

  4. del Arco, F.M.P., Strapparava, C., Lopez, L.A.U., Martín-Valdivia, M.T.: Emoevent: a multilingual emotion corpus based on different events. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 1492–1498 (2020)

    Google Scholar 

  5. Asprino, L., Bulla, L., De Giorgis, S., Gangemi, A., Marinucci, L., Mongiovì, M.: Uncovering values: detecting latent moral content from natural language with explainable and non-trained methods. In: Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures, pp. 33–41 (2022)

    Google Scholar 

  6. Blascovich, J., Loomis, J., Beall, A.C., Swinth, K.R., Hoyt, C.L., Bailenson, J.N.: Immersive virtual environment technology as a methodological tool for social psychology. Psychol. Inq. 13(2), 103–124 (2002)

    Article  Google Scholar 

  7. Casula, E.P., et al.: Feeling of ownership over an embodied avatar’s hand brings about fast changes of fronto-parietal cortical dynamics. J. Neurosci. 42(4), 692–701 (2022)

    Article  Google Scholar 

  8. Daga, E., et al.: Integrating citizen experiences in cultural heritage archives: requirements, state of the art, and challenges. ACM J. Comput. Cult. Herit. (JOCCH) 15(1), 1–35 (2022)

    Article  Google Scholar 

  9. Dan-Glauser, E.S., Scherer, K.R.: The difficulties in emotion regulation scale (DERS). Swiss J. Psychol. (2012)

    Google Scholar 

  10. Demszky, D., Movshovitz-Attias, D., Ko, J., Cowen, A., Nemade, G., Ravi, S.: Goemotions: a dataset of fine-grained emotions. arXiv preprint arXiv:2005.00547 (2020)

  11. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  12. Ekman, P.: Basic emotions. In: Handbook of Cognition and Emotion, vol. 98, no. 45–60, p. 16 (1999)

    Google Scholar 

  13. Ekman, P.: Atlas of emotion (2018)

    Google Scholar 

  14. Fusaro, M., Tieri, G., Aglioti, S.M.: Seeing pain and pleasure on self and others: behavioral and psychophysiological reactivity in immersive virtual reality. J. Neurophysiol. 116(6), 2656–2662 (2016)

    Article  Google Scholar 

  15. Graham, J., et al.: Moral foundations theory: the pragmatic validity of moral pluralism. In: Advances in Experimental Social Psychology, vol. 47, pp. 55–130. Elsevier (2013)

    Google Scholar 

  16. Graham, J., Nosek, B.A., Haidt, J.: The moral stereotypes of liberals and conservatives: exaggeration of differences across the political spectrum. PLoS ONE 7(12), e50092 (2012)

    Article  Google Scholar 

  17. Haidt, J.: The emotional dog and its rational tail: a social intuitionist approach to moral judgment. Psychol. Rev. 108(4), 814 (2001)

    Article  Google Scholar 

  18. Haidt, J.: The righteous mind: why good people are divided by politics and religion. Vintage (2012)

    Google Scholar 

  19. Hamilton-Giachritsis, C., Banakou, D., Garcia Quiroga, M., Giachritsis, C., Slater, M.: Reducing risk and improving maternal perspective-taking and empathy using virtual embodiment. Sci. Rep. 8(1), 1–10 (2018)

    Article  Google Scholar 

  20. Hartmann, J.: Emotion english distilroberta-base (2022). https://huggingface.co/j-hartmann/emotion-english-distilroberta-base/

  21. Holt-Lunstad, J., Smith, T.B., Baker, M., Harris, T., Stephenson, D.: Loneliness and social isolation as risk factors for mortality: a meta-analytic review. Perspect. Psychol. Sci. 10(2), 227–237 (2015)

    Article  Google Scholar 

  22. Holt-Lunstad, J., Smith, T.B., Layton, J.B.: Social relationships and mortality risk: a meta-analytic review. PLoS Med. 7(7), e1000316 (2010)

    Article  Google Scholar 

  23. Kishore, S., Spanlang, B., Iruretagoyena, G., Halan, S., Szostak, D., Slater, M.: A virtual reality embodiment technique to enhance helping behavior of police toward a victim of police racial aggression. PRESENCE: Virtual Augmented Reality 28, 5–27 (2022)

    Google Scholar 

  24. Li, Y., Su, H., Shen, X., Li, W., Cao, Z., Niu, S.: Dailydialog: a manually labelled multi-turn dialogue dataset. arXiv preprint arXiv:1710.03957 (2017)

  25. Lieto, A., Pozzato, G.L., Striani, M., Zoia, S., Damiano, R.: Degari 2.0: a diversity-seeking, explainable, and affective art recommender for social inclusion. Cogn. Syst. Res. 77, 1–17 (2023)

    Google Scholar 

  26. Lucifora, C., et al.: Cyber-therapy: the use of artificial intelligence in psychological practice. In: Russo, D., Ahram, T., Karwowski, W., Di Bucchianico, G., Taiar, R. (eds.) IHSI 2021. AISC, vol. 1322, pp. 127–132. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68017-6_19

    Chapter  Google Scholar 

  27. Mohammad, S., Bravo-Marquez, F., Salameh, M., Kiritchenko, S.: Semeval-2018 task 1: affect in tweets. In: Proceedings of the 12th International Workshop on Semantic Evaluation, pp. 1–17 (2018)

    Google Scholar 

  28. Nandwani, P., Verma, R.: A review on sentiment analysis and emotion detection from text. Soc. Netw. Anal. Min. 11(1), 1–19 (2021)

    Article  Google Scholar 

  29. Pacheco, M.L., Goldwasser, D.: Modeling content and context with deep relational learning. Trans. Assoc. Comput. Linguist. 9, 100–119 (2021)

    Article  Google Scholar 

  30. Pérez, J.M., Giudici, J.C., Luque, F.: pysentimiento: a python toolkit for sentiment analysis and socialnlp tasks. arXiv preprint arXiv:2106.09462 (2021)

  31. Poria, S., Hazarika, D., Majumder, N., Naik, G., Cambria, E., Mihalcea, R.: Meld: a multimodal multi-party dataset for emotion recognition in conversations. arXiv preprint arXiv:1810.02508 (2018)

  32. Priniski, J.H., et al.: Mapping moral valence of tweets following the killing of George Floyd. arXiv preprint arXiv:2104.09578 (2021)

  33. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese BERT-networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics (2019). https://arxiv.org/abs/1908.10084

  34. Riva, P., Eck, J.: The many faces of social exclusion. In: Social Exclusion: Psychological Approaches to Understanding and Reducing Its Impact, pp. ix–xv (2016)

    Google Scholar 

  35. Riva, P., Wirth, J.H., Williams, K.D.: The consequences of pain: the social and physical pain overlap on psychological responses. Eur. J. Soc. Psychol. 41(6), 681–687 (2011)

    Article  Google Scholar 

  36. Saravia, E., Liu, H.C.T., Huang, Y.H., Wu, J., Chen, Y.S.: Carer: contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 3687–3697 (2018)

    Google Scholar 

  37. Scherer, K.R., Wallbott, H.G.: Evidence for universality and cultural variation of differential emotion response patterning. J. Pers. Soc. Psychol. 66(2), 310 (1994)

    Article  Google Scholar 

  38. Slater, M., et al.: Bystander responses to a violent incident in an immersive virtual environment. PLoS ONE 8(1), e52766 (2013)

    Article  Google Scholar 

  39. Slater, M., Spanlang, B., Sanchez-Vives, M.V., Blanke, O.: First person experience of body transfer in virtual reality. PLoS ONE 5(5), e10564 (2010)

    Article  Google Scholar 

  40. Steuer, J.: Defining virtual reality: dimensions determining telepresence. J. Commun. 42(4), 73–93 (1992)

    Article  Google Scholar 

  41. Wesselmann, E.D., Grzybowski, M.R., Steakley-Freeman, D.M., DeSouza, E.R., Nezlek, J.B., Williams, K.D.: Social exclusion in everyday life. In: Social Exclusion: Psychological Approaches to Understanding and Reducing Its Impact, pp. 3–23 (2016)

    Google Scholar 

  42. Wright, D., Augenstein, I.: Transformer based multi-source domain adaptation. arXiv preprint arXiv:2009.07806 (2020)

  43. Yee, N., Bailenson, J.N.: Walk a mile in digital shoes: the impact of embodied perspective-taking on the reduction of negative stereotyping in immersive virtual environments. Proc. PRESENCE 24, 26 (2006)

    Google Scholar 

  44. Yin, W., Hay, J., Roth, D.: Benchmarking zero-shot text classification: datasets, evaluation and entailment approach (2019)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the H2020 projects TAILOR: Foundations of Trustworthy AI - Integrating Reasoning, Learning and Optimization – EC Grant Agreement number 952215 – and SPICE: Social Cohesion, Participation and Inclusion through Cultural Engagement – EC Grant Agreement number 870811, as well as by the Italian PNRR MUR project PE0000013-FAIR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Lucifora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bulla, L., De Giorgis, S., Gangemi, A., Lucifora, C., Mongiovì, M. (2023). Comparing User Perspectives in a Virtual Reality Cultural Heritage Environment. In: Indulska, M., Reinhartz-Berger, I., Cetina, C., Pastor, O. (eds) Advanced Information Systems Engineering. CAiSE 2023. Lecture Notes in Computer Science, vol 13901. Springer, Cham. https://doi.org/10.1007/978-3-031-34560-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34560-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34559-3

  • Online ISBN: 978-3-031-34560-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics