Educational Effect of Molecular Dynamics Simulation in a Smartphone Virtual Reality System | SpringerLink
Skip to main content

Educational Effect of Molecular Dynamics Simulation in a Smartphone Virtual Reality System

  • Conference paper
  • First Online:
Learning and Collaboration Technologies (HCII 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14041))

Included in the following conference series:

  • 958 Accesses

Abstract

Students have difficulty understanding complex molecular structures and chemical bonds in a two-dimensional media such as textbooks and writing on the blackboard. Teachers also use molecular models or viewers to teach, but the cost of using them is not negligible. To easily share the molecular images of experts and enhance the understanding and motivation of novices, we have developed a prototype of a standalone smartphone virtual reality (VR) interface with a molecular dynamics (MD) simulator for chemical education, called VR-MD. In this application, users can touch, and move molecules whose coordinates are updated in real time by the MD engine. For teachability and safety, we adopted handheld VR glasses and a VR/augmented reality (AR) mode changer responsive in the state of the user’s hand. As a demonstration experiment, we conducted on-site lectures at a high school with one of these applications was provided for each student. A 7-point scale and a free-response questionnaire were administered following the lecture. The results confirmed the effectiveness of the program for improving comprehension and the motivation to learn.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Concannon, B.J., Esmail, S., Roduta Roberts, M.: Head-mounted display virtual reality in post-secondary education and skill training. In: Frontiers in Education, vol. 4, p. 80 (2019)

    Google Scholar 

  2. Kamińska, D., et al.: Virtual reality and its applications in education: survey. Information 10(10), 318 (2019)

    Article  Google Scholar 

  3. O’Connor, M.B., et al.: Interactive molecular dynamics in virtual reality from quantum chemistry to drug binding: an open-source multi-person framework. J. Chem. Phys. 150, 220901 (2019). https://doi.org/10.1063/1.5092590

    Article  Google Scholar 

  4. Seritan, S., Wang, Y., Ford, J.E., Valentini, A., Gold, T., Martínez, T.J.: InteraChem: virtual reality visualizer for reactive interactive molecular dynamics. J. Chem. Educ. 98, 3486 (2021). https://doi.org/10.1021/acs.jchemed.1c00654

    Article  Google Scholar 

  5. Bennie, S.J., et al.: Teaching enzyme catalysis using interactive molecular dynamics in virtual reality. J. Chem. Educ. 96, 2488 (2019). https://doi.org/10.1021/acs.jchemed.9b00181

    Article  Google Scholar 

  6. Smith, J.R., Byrum, A., McCormick, T.M., Young, N., Orban, C., Porter, C.D.: A controlled study of stereoscopic virtual reality in freshman electrostatics. arXiv preprint arXiv:1707.01544 (2017)

  7. Abraham, M.J., et al.: GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25 (2015)

    Article  Google Scholar 

  8. Kim, H.G., Lee, S., Kim, S., Lim, H.T., Ro, Y.M.: Towards a better understanding of VR sickness: physical symptom prediction for VR contents. In: The Thirty-Fifth AAAI Conference on Artificial Intelligence, Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 1, pp. 836–844. https://doi.org/10.1609/aaai.v35i1.16166

  9. VR-MD The University of Tokyo Social Cooperation Program x Toyota Central R &D Labs. Inc. https://www.youtube.com/watch?v=AzIUEVvu1rA

  10. Haas, J.: A history of the unity game engine. Diss. Worcester Polytech. Inst. 483, 484 (2014)

    Google Scholar 

  11. HandMR. https://github.com/NON906/HandMR/blob/master/README_EN.md

  12. Zhang, F., et al.: Mediapipe hands: on-device real-time hand tracking. arXiv preprint arXiv:2006.10214 (2020)

  13. Petersen, I.R., Savkin, A.V.: Robust Kalman Filtering for Signals and Systems with Large Uncertainties. Springer, Cham (1999)

    Book  MATH  Google Scholar 

  14. Berendsen, H.J., van der Spoel, D., van Drunen, R.: GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91(1–3), 43–56 (1995)

    Article  Google Scholar 

  15. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)

    Article  MATH  Google Scholar 

  16. Case, D.A., et al.: The Amber biomolecular simulation programs. J. Comput. Chem. 26(16), 1668–1688 (2005)

    Article  Google Scholar 

  17. Rapaport, D.C., Rapaport, D.C.R.: The Art of Molecular Dynamics Simulation. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  18. Leimkuhler, B., Matthews, C.: Robust and efficient configurational molecular sampling via Langevin dynamics. J. Chem. Phys. 138(17), 05B601_1 (2013)

    Google Scholar 

  19. Cornell, W.D., et al.: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117(19), 5179–5197 (1995)

    Article  Google Scholar 

  20. Wang, J., et al.: Development and testing of a general amber force field. J. Comput. Chem. 25(9), 1157–1174 (2004)

    Article  Google Scholar 

  21. Jorgensen, W.L., et al.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79(2), 926–935 (1983)

    Article  Google Scholar 

  22. Mayo, S.L., Olafson, B.D., Goddard, W.A.: DREIDING: a generic force field for molecular simulations. J. Phys. Chem. 94(26), 8897–8909 (1990)

    Article  Google Scholar 

  23. Jakalian, A., et al.: Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. method. J. Comput. Chem. 21(2), 132–146 (2000)

    Google Scholar 

  24. Jakalian, A., Jack, D.B., Bayly, C.I.: Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J. Comput. Chem. 23(16), 1623–1641 (2002)

    Google Scholar 

  25. Essmann, U., et al.: A smooth particle mesh Ewald method. J. Chem. Phys. 103(19), 8577–8593 (1995)

    Article  Google Scholar 

  26. Engheta, N., et al.: The fast multipole method (FMM) for electromagnetic scattering problems. IEEE Trans. Antennas Propag. 40(6), 634–641 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Takamura, H., Inui, T., Okumura, M.: Extracting semantic orientations of words using spin model. In: Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL2005), pp. 133–140 (2005)

    Google Scholar 

  28. Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete samples). Biometrika 52(3/4), 591–611 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenroh Matsuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Matsuda, K., Kikkawa, N., Kajita, S., Sato, S., Tanikawa, T. (2023). Educational Effect of Molecular Dynamics Simulation in a Smartphone Virtual Reality System. In: Zaphiris, P., Ioannou, A. (eds) Learning and Collaboration Technologies. HCII 2023. Lecture Notes in Computer Science, vol 14041. Springer, Cham. https://doi.org/10.1007/978-3-031-34550-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34550-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34549-4

  • Online ISBN: 978-3-031-34550-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics