Semi-supervised Brain Tumor Segmentation Using Diffusion Models | SpringerLink
Skip to main content

Semi-supervised Brain Tumor Segmentation Using Diffusion Models

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations (AIAI 2023)

Abstract

Semi-supervised learning can be a promising approach in expediting the process of annotating medical images. In this paper, we use diffusion models to learn visual representations from multi-modal medical images in an unsupervised setting. These learned representations are then employed for the challenging downstream task of brain tumor segmentation. To avoid feature selection when using pixel-level classifiers, we propose fine-tuning the noise predictor network for semantic segmentation. We compare these methods against a supervised baseline over a varying number of training samples and evaluate their performance on a substantially larger test set. Our results show that, with less than 20 training samples, all methods outperform the supervised baseline across all tumor regions. Additionally, we present a practical use-case for patient-level tumor segmentation using limited supervision. The code we used and our trained diffusion model are publicly available (https://github.com/risc-mi/braintumor-ddpm).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 18589
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 18589
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amit, T., Shaharbany, T., Nachmani, E., Wolf, L.: Segdiff: Image segmentation with diffusion probabilistic models (2021)

    Google Scholar 

  2. Baid, U., et al.: The RSNA-ASNR-miccai brats 2021 benchmark on brain tumor segmentation and radiogenomic classification (2021)

    Google Scholar 

  3. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Scientific Data 4, 170117 (2017)

    Article  Google Scholar 

  4. Baranchuk, D., Voynov, A., Rubachev, I., Khrulkov, V., Babenko, A.: Label-efficient semantic segmentation with diffusion models. In: International Conference on Learning Representations (2022)

    Google Scholar 

  5. Cirillo, M.D., Abramian, D., Eklund, A.: Vox2Vox: 3D-GAN for brain tumour segmentation. In: Crimi, Alessandro, Bakas, Spyridon (eds.) BrainLes 2020. LNCS, vol. 12658, pp. 274–284. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72084-1_25

  6. Dhariwal, P., Nichol, A.: Diffusion models beat GANS on image synthesis. In: Advances in Neural Information Processing Systems, vol. 34, pp. 8780–8794. Curran Associates, Inc. (2021)

    Google Scholar 

  7. Fiez, J.A., Damasio, H., Grabowski, T.J.: Lesion segmentation and manual warping to a reference brain: Intra- and interobserver reliability. Human Brain Mapping 9(4), 192–211 (2000)

    Article  Google Scholar 

  8. Guo, X., Yang, Y., Ye, C., Lu, S., Xiang, Y., Ma, T.: Accelerating diffusion models via pre-segmentation diffusion sampling for medical image segmentation (2022)

    Google Scholar 

  9. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16000–16009 (2022)

    Google Scholar 

  10. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851. Curran Associates, Inc. (2020)

    Google Scholar 

  11. Hoogeboom, E., Salimans, T.: Blurring diffusion models (2022)

    Google Scholar 

  12. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.: nnu-net: A self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18, 203–211 (2021)

    Google Scholar 

  13. Kazerouni, A., et al.: Diffusion models for medical image analysis: A comprehensive survey (2022)

    Google Scholar 

  14. Li, D., Yang, J., Kreis, K., Torralba, A., Fidler, S.: Semantic segmentation with generative models: Semi-supervised learning and strong out-of-domain generalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8300–8311 (2021)

    Google Scholar 

  15. Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., Van Gool, L.: Repaint: Inpainting using denoising diffusion probabilistic models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11461–11471 (2022)

    Google Scholar 

  16. Luu, H.M., Park, S.H.: Extending nn-UNet for brain tumor segmentation. In: Brainlesion: Glioma. Multiple Sclerosis, Stroke and Traumatic Brain Injuries, pp. 173–186. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-09002-8_16

  17. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  18. Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In: Meila, M., Zhang, T. (eds.) Proceedings of the 38th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 139, pp. 8162–8171. PMLR (2021)

    Google Scholar 

  19. Nichol, A.Q., et al.: GLIDE: Towards photorealistic image generation and editing with text-guided diffusion models. In: Proceedings of the 39th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 162, pp. 16784–16804. PMLR (2022)

    Google Scholar 

  20. Ouali, Y., Hudelot, C., Tami, M.: An overview of deep semi-supervised learning (2020)

    Google Scholar 

  21. Pinaya, W.H.L., et al.: Fast unsupervised brain anomaly detection and segmentation with diffusion models. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2022, pp. 705–714. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_67

  22. Rissanen, S., Heinonen, M., Solin, A.: Generative modelling with inverse heat dissipation (2022)

    Google Scholar 

  23. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695 (2022)

    Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  25. Saharia, C., Ho, J., Chan, W., Salimans, T., Fleet, D.J., Norouzi, M.: Image super-resolution via iterative refinement. IEEE Trans. Pattern Anal. Mach. Intell. 45(4), 4713–4726 (2023)

    Google Scholar 

  26. Sharp, G.C., et al.: Vision 20/20: Perspectives on automated image segmentation for radiotherapy. Med Phys. 41(5), 050901 (2014)

    Article  Google Scholar 

  27. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 2256–2265. PMLR, Lille (2015)

    Google Scholar 

  28. Wolleb, J., Bieder, F., Sandkühler, R., Cattin, P.C.: Diffusion models for medical anomaly detection. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2022, pp. 35–45. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_4

  29. Wolleb, J., Sandkühler, R., Bieder, F., Valmaggia, P., Cattin, P.C.: Diffusion models for implicit image segmentation ensembles. In: Proceedings of the 5th International Conference on Medical Imaging with Deep Learning. Proceedings of Machine Learning Research, vol. 172, pp. 1336–1348. PMLR (2022)

    Google Scholar 

  30. Wu, J., et al.: Medsegdiff: Medical image segmentation with diffusion probabilistic model (2022)

    Google Scholar 

  31. Wyatt, J., Leach, A., Schmon, S.M., Willcocks, C.G.: Anoddpm: Anomaly detection with denoising diffusion probabilistic models using simplex noise. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 649–655 (2022)

    Google Scholar 

  32. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40

  33. Zhang, Y., et al.: Datasetgan: Efficient labeled data factory with minimal human effort. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10145–10155 (2021)

    Google Scholar 

Download references

Acknowledgments

This project is financed by research subsidies granted by the government of Upper Austria. RISC Software GmbH is Member of UAR (Upper Austrian Research) Innovation Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Alshenoudy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alshenoudy, A., Sabrowsky-Hirsch, B., Thumfart, S., Giretzlehner, M., Kobler, E. (2023). Semi-supervised Brain Tumor Segmentation Using Diffusion Models. In: Maglogiannis, I., Iliadis, L., MacIntyre, J., Dominguez, M. (eds) Artificial Intelligence Applications and Innovations. AIAI 2023. IFIP Advances in Information and Communication Technology, vol 675. Springer, Cham. https://doi.org/10.1007/978-3-031-34111-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34111-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34110-6

  • Online ISBN: 978-3-031-34111-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics