Abstract
Reconstructing a 3D surface from colonoscopy video is challenging due to illumination and reflectivity variation in the video frame that can cause defective shape predictions. Aiming to overcome this challenge, we utilize the characteristics of surface normal vectors and develop a two-step neural framework that significantly improves the colonoscopy reconstruction quality. The normal-based depth initialization network trained with self-supervised normal consistency loss provides depth map initialization to the normal-depth refinement module, which utilizes the relationship between illumination and surface normals to refine the frame-wise normal and depth predictions recursively. Our framework’s depth accuracy performance on phantom colonoscopy data demonstrates the value of exploiting the surface normals in colonoscopy reconstruction, especially on en face views. Due to its low depth error, the prediction result from our framework will require limited post-processing to be clinically applicable for real-time colonoscopy reconstruction.
S. Wang and Y. Zhang—These authors contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bae, G., Budvytis, I., Yeung, C.-K., Cipolla, R.: Deep multi-view stereo for dense 3D reconstruction from monocular endoscopic video. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 774–783. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_74
Bian, J., et al.: Unsupervised scale-consistent depth and ego-motion learning from monocular video. Adv. Neural. Inf. Process. Syst. 32, 35–45 (2019)
Bobrow, T.L., Golhar, M., Vijayan, R., Akshintala, V.S., Garcia, J.R., Durr, N.J.: Colonoscopy 3D video dataset with paired depth from 2D–3D registration. arXiv preprint arXiv:2206.08903 (2022)
Cheng, K., Ma, Y., Sun, B., Li, Y., Chen, X.: Depth estimation for colonoscopy images with self-supervised learning from videos. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 119–128. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_12
Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 40(3), 611–625 (2017)
Godard, C., Mac Aodha, O., Firman, M., Brostow, G.J.: Digging into self-supervised monocular depth estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3828–3838 (2019)
Hong, W., Wang, J., Qiu, F., Kaufman, A., Anderson, J.: Colonoscopy simulation. In: Medical Imaging 2007: Physiology, Function, and Structure from Medical Images, vol. 6511, p. 65110R. International Society for Optics and Photonics (2007)
Li, B., Huang, Y., Liu, Z., Zou, D., Yu, W.: StructDepth: leveraging the structural regularities for self-supervised indoor depth estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12663–12673 (2021)
Li, Z., Xu, Z., Ramamoorthi, R., Sunkavalli, K., Chandraker, M.: Learning to reconstruct shape and spatially-varying reflectance from a single image. In: SIGGRAPH Asia 2018 Technical Papers, p. 269. ACM (2018)
Lichy, D., Sengupta, S., Jacobs, D.W.: Fast light-weight near-field photometric stereo. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022)
Lichy, D., Wu, J., Sengupta, S., Jacobs, D.W.: Shape and material capture at home. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021)
Liu, X., et al.: Dense depth estimation in monocular endoscopy with self-supervised learning methods. IEEE Trans. Med. Imaging 39(5), 1438–1447 (2019)
Liu, X., et al.: Reconstructing sinus anatomy from endoscopic video – towards a radiation-free approach for quantitative longitudinal assessment. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 3–13. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_1
Ma, R., Wang, R., Pizer, S., Rosenman, J., McGill, S.K., Frahm, J.-M.: Real-time 3D reconstruction of colonoscopic surfaces for determining missing regions. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 573–582. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_64
Ma, R., Wang, R., Zhang, Y., Pizer, S., McGill, S.K., Rosenman, J., Frahm, J.M.: Rnnslam: Reconstructing the 3d colon to visualize missing regions during a colonoscopy. Med. Image Anal. 72, 102100 (2021)
Mahmood, F., Chen, R., Durr, N.J.: Unsupervised reverse domain adaptation for synthetic medical images via adversarial training. IEEE Trans. Med. Imaging 37(12), 2572–2581 (2018)
Mathew, S., Nadeem, S., Kumari, S., Kaufman, A.: Augmenting colonoscopy using extended and directional CycleGAN for lossy image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4696–4705 (2020)
Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4104–4113 (2016)
Xie, W., Nie, Y., Song, Z., Wang, C.C.L.: Mesh-based computation for solving photometric stereo with near point lighting. IEEE Comput. Graphics Appl. 39(3), 73–85 (2019). https://doi.org/10.1109/MCG.2019.2909360
Yang, Z., Wang, P., Wang, Y., Xu, W., Nevatia, R.: LEGO: learning edge with geometry all at once by watching videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 225–234 (2018)
Yang, Z., Wang, P., Xu, W., Zhao, L., Nevatia, R.: Unsupervised learning of geometry from videos with edge-aware depth-normal consistency. In: Thirty-Second AAAI conference on artificial intelligence (2018)
Yu, Z., Peng, S., Niemeyer, M., Sattler, T., Geiger, A.: MonoSDF: exploring monocular geometric cues for neural implicit surface reconstruction. In: Advances in Neural Information Processing Systems (2022)
Zhang, Y., Wang, S., Ma, R., McGill, S.K., Rosenman, J.G., Pizer, S.M.: Lighting enhancement aids reconstruction of colonoscopic surfaces. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 559–570. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0_43
Zhou, Q.Y., Park, J., Koltun, V.: Open3D: a modern library for 3D data processing. arXiv:1801.09847 (2018)
Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-motion from video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1851–1858 (2017)
Acknowledgements
We thank Zhen Li and his team at Olympus, Inc. for support and collaboration and Taylor Bobrow for early access to the C3DV dataset.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, S. et al. (2023). A Surface-Normal Based Neural Framework for Colonoscopy Reconstruction. In: Frangi, A., de Bruijne, M., Wassermann, D., Navab, N. (eds) Information Processing in Medical Imaging. IPMI 2023. Lecture Notes in Computer Science, vol 13939. Springer, Cham. https://doi.org/10.1007/978-3-031-34048-2_61
Download citation
DOI: https://doi.org/10.1007/978-3-031-34048-2_61
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-34047-5
Online ISBN: 978-3-031-34048-2
eBook Packages: Computer ScienceComputer Science (R0)