A Surface-Normal Based Neural Framework for Colonoscopy Reconstruction | SpringerLink
Skip to main content

A Surface-Normal Based Neural Framework for Colonoscopy Reconstruction

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2023)

Abstract

Reconstructing a 3D surface from colonoscopy video is challenging due to illumination and reflectivity variation in the video frame that can cause defective shape predictions. Aiming to overcome this challenge, we utilize the characteristics of surface normal vectors and develop a two-step neural framework that significantly improves the colonoscopy reconstruction quality. The normal-based depth initialization network trained with self-supervised normal consistency loss provides depth map initialization to the normal-depth refinement module, which utilizes the relationship between illumination and surface normals to refine the frame-wise normal and depth predictions recursively. Our framework’s depth accuracy performance on phantom colonoscopy data demonstrates the value of exploiting the surface normals in colonoscopy reconstruction, especially on en face views. Due to its low depth error, the prediction result from our framework will require limited post-processing to be clinically applicable for real-time colonoscopy reconstruction.

S. Wang and Y. Zhang—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bae, G., Budvytis, I., Yeung, C.-K., Cipolla, R.: Deep multi-view stereo for dense 3D reconstruction from monocular endoscopic video. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 774–783. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_74

    Chapter  Google Scholar 

  2. Bian, J., et al.: Unsupervised scale-consistent depth and ego-motion learning from monocular video. Adv. Neural. Inf. Process. Syst. 32, 35–45 (2019)

    Google Scholar 

  3. Bobrow, T.L., Golhar, M., Vijayan, R., Akshintala, V.S., Garcia, J.R., Durr, N.J.: Colonoscopy 3D video dataset with paired depth from 2D–3D registration. arXiv preprint arXiv:2206.08903 (2022)

  4. Cheng, K., Ma, Y., Sun, B., Li, Y., Chen, X.: Depth estimation for colonoscopy images with self-supervised learning from videos. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 119–128. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_12

    Chapter  Google Scholar 

  5. Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 40(3), 611–625 (2017)

    Article  Google Scholar 

  6. Godard, C., Mac Aodha, O., Firman, M., Brostow, G.J.: Digging into self-supervised monocular depth estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3828–3838 (2019)

    Google Scholar 

  7. Hong, W., Wang, J., Qiu, F., Kaufman, A., Anderson, J.: Colonoscopy simulation. In: Medical Imaging 2007: Physiology, Function, and Structure from Medical Images, vol. 6511, p. 65110R. International Society for Optics and Photonics (2007)

    Google Scholar 

  8. Li, B., Huang, Y., Liu, Z., Zou, D., Yu, W.: StructDepth: leveraging the structural regularities for self-supervised indoor depth estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12663–12673 (2021)

    Google Scholar 

  9. Li, Z., Xu, Z., Ramamoorthi, R., Sunkavalli, K., Chandraker, M.: Learning to reconstruct shape and spatially-varying reflectance from a single image. In: SIGGRAPH Asia 2018 Technical Papers, p. 269. ACM (2018)

    Google Scholar 

  10. Lichy, D., Sengupta, S., Jacobs, D.W.: Fast light-weight near-field photometric stereo. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022)

    Google Scholar 

  11. Lichy, D., Wu, J., Sengupta, S., Jacobs, D.W.: Shape and material capture at home. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  12. Liu, X., et al.: Dense depth estimation in monocular endoscopy with self-supervised learning methods. IEEE Trans. Med. Imaging 39(5), 1438–1447 (2019)

    Article  Google Scholar 

  13. Liu, X., et al.: Reconstructing sinus anatomy from endoscopic video – towards a radiation-free approach for quantitative longitudinal assessment. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 3–13. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_1

    Chapter  Google Scholar 

  14. Ma, R., Wang, R., Pizer, S., Rosenman, J., McGill, S.K., Frahm, J.-M.: Real-time 3D reconstruction of colonoscopic surfaces for determining missing regions. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 573–582. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_64

    Chapter  Google Scholar 

  15. Ma, R., Wang, R., Zhang, Y., Pizer, S., McGill, S.K., Rosenman, J., Frahm, J.M.: Rnnslam: Reconstructing the 3d colon to visualize missing regions during a colonoscopy. Med. Image Anal. 72, 102100 (2021)

    Google Scholar 

  16. Mahmood, F., Chen, R., Durr, N.J.: Unsupervised reverse domain adaptation for synthetic medical images via adversarial training. IEEE Trans. Med. Imaging 37(12), 2572–2581 (2018)

    Article  Google Scholar 

  17. Mathew, S., Nadeem, S., Kumari, S., Kaufman, A.: Augmenting colonoscopy using extended and directional CycleGAN for lossy image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4696–4705 (2020)

    Google Scholar 

  18. Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4104–4113 (2016)

    Google Scholar 

  19. Xie, W., Nie, Y., Song, Z., Wang, C.C.L.: Mesh-based computation for solving photometric stereo with near point lighting. IEEE Comput. Graphics Appl. 39(3), 73–85 (2019). https://doi.org/10.1109/MCG.2019.2909360

    Article  Google Scholar 

  20. Yang, Z., Wang, P., Wang, Y., Xu, W., Nevatia, R.: LEGO: learning edge with geometry all at once by watching videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 225–234 (2018)

    Google Scholar 

  21. Yang, Z., Wang, P., Xu, W., Zhao, L., Nevatia, R.: Unsupervised learning of geometry from videos with edge-aware depth-normal consistency. In: Thirty-Second AAAI conference on artificial intelligence (2018)

    Google Scholar 

  22. Yu, Z., Peng, S., Niemeyer, M., Sattler, T., Geiger, A.: MonoSDF: exploring monocular geometric cues for neural implicit surface reconstruction. In: Advances in Neural Information Processing Systems (2022)

    Google Scholar 

  23. Zhang, Y., Wang, S., Ma, R., McGill, S.K., Rosenman, J.G., Pizer, S.M.: Lighting enhancement aids reconstruction of colonoscopic surfaces. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 559–570. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0_43

    Chapter  Google Scholar 

  24. Zhou, Q.Y., Park, J., Koltun, V.: Open3D: a modern library for 3D data processing. arXiv:1801.09847 (2018)

  25. Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-motion from video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1851–1858 (2017)

    Google Scholar 

Download references

Acknowledgements

We thank Zhen Li and his team at Olympus, Inc. for support and collaboration and Taylor Bobrow for early access to the C3DV dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuxian Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4870 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, S. et al. (2023). A Surface-Normal Based Neural Framework for Colonoscopy Reconstruction. In: Frangi, A., de Bruijne, M., Wassermann, D., Navab, N. (eds) Information Processing in Medical Imaging. IPMI 2023. Lecture Notes in Computer Science, vol 13939. Springer, Cham. https://doi.org/10.1007/978-3-031-34048-2_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34048-2_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34047-5

  • Online ISBN: 978-3-031-34048-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics