Tuning U-Net for Brain Tumor Segmentation | SpringerLink
Skip to main content

Tuning U-Net for Brain Tumor Segmentation

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13769))

Included in the following conference series:

Abstract

We propose a solution for BraTS22 challenge that builds on top of our previous submission—Optimized U-Net method. This year we focused on improving the model architecture and training schedule. The proposed method further improves scores on both our internal cross validation and challenge validation data. The validation mean dice scores are: ET 0.8381, TC 0.8802, WT 0.9292, and mean Hausdorff95: ET 14.460, TC 5.840, WT 3.594.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7435
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9294
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    MONAI sliding window implementation was used.

  2. 2.

    https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Segmentation/nnUNet.

  3. 3.

    https://ngc.nvidia.com/catalog/containers/nvidia:pytorch.

  4. 4.

    https://www.nvidia.com/en-us/data-center/a100.

References

  1. Goodenberger, M.L., Jenkins, R.B.: Genetics of adult glioma. Cancer Genet. 205(12), 613–621 (2012). https://doi.org/10.1016/j.cancergen.2012.10.009

    Article  Google Scholar 

  2. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  3. Zeng, T., Wu, B., Ji, S.: DeepEM3D: approaching human-level performance on 3D anisotropic EM image segmentation. Bioinformatics 33(16), 2555–2562 (2017). https://doi.org/10.1093/bioinformatics/btx188

    Article  Google Scholar 

  4. Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification (2021)

    Google Scholar 

  5. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  6. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4 (2017). https://doi.org/10.1038/sdata.2017.117

  7. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection, July 2017. https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

  8. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection, July 2017. https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

  9. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  10. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28

    Chapter  Google Scholar 

  11. Jiang, Z., Ding, C., Liu, M., Tao, D.: Two-stage cascaded U-Net: 1st place solution to BraTS challenge 2019 segmentation task. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 231–241. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_22

    Chapter  Google Scholar 

  12. Isensee, F., Jäger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  13. Isensee, F., Jäger, P.F., Full, P.M., Vollmuth, P., Maier-Hein, K.H.: nnU-Net for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12659, pp. 118–132. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72087-2_11

    Chapter  Google Scholar 

  14. Futrega, M., Milesi, A., Marcinkiewicz, M., Ribalta, P.: Optimized U-Net for brain tumor segmentation (2021). https://doi.org/10.48550/ARXIV.2110.03352. https://arxiv.org/abs/2110.03352

  15. Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas (2018)

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)

    Google Scholar 

  17. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks (2016)

    Google Scholar 

  18. Szegedy, C., et al.: Deep residual learning for image recognition (2014)

    Google Scholar 

  19. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

  20. Hatamizadeh, A., Yang, D., Roth, H., Xu, D.: UNETR: transformers for 3D medical image segmentation (2021)

    Google Scholar 

  21. Zhu, Q., Du, B., Turkbey, B., Choyke, P.L., Yan, P.: Deeply-supervised CNN for prostate segmentation (2017)

    Google Scholar 

  22. Ghiasi, G., Lin, T.Y., Le, Q.V.: DropBlock: a regularization method for convolutional networks (2018)

    Google Scholar 

  23. Cox, R., et al.: A (sort of) new image data format standard: NiFTI-1, vol. 22, January 2004

    Google Scholar 

  24. Milletari, F., Navab, N., Ahmadi, S.-A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: International Conference on 3D Vision (3DV) (2016)

    Google Scholar 

  25. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  26. Micikevicius, P., et al.: Mixed precision training (2018)

    Google Scholar 

  27. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017)

    Google Scholar 

  28. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts (2017)

    Google Scholar 

  29. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification (2015)

    Google Scholar 

  30. Antonelli, M., et al.: The medical segmentation decathlon. Nat. Commun. 13, 4128 (2022)

    Article  Google Scholar 

  31. NVIDIA nnU-Net implementation. https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Segmentation/nnUNet. Accessed 30 Sept 2021

  32. Dosovitskiy, A., et al.: An image is worth \(16\times 16\) words: transformers for image recognition at scale (2021)

    Google Scholar 

  33. Vaswani, A., et al.: Attention is all you need (2017)

    Google Scholar 

  34. Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2014)

    Google Scholar 

  35. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michał Futrega , Michał Marcinkiewicz or Pablo Ribalta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Futrega, M., Marcinkiewicz, M., Ribalta, P. (2023). Tuning U-Net for Brain Tumor Segmentation. In: Bakas, S., et al. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2022. Lecture Notes in Computer Science, vol 13769. Springer, Cham. https://doi.org/10.1007/978-3-031-33842-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33842-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33841-0

  • Online ISBN: 978-3-031-33842-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics