Experimental Study of the Performance of Convolutional Neural Networks Applied in Art Media Classification | SpringerLink
Skip to main content

Experimental Study of the Performance of Convolutional Neural Networks Applied in Art Media Classification

  • Conference paper
  • First Online:
Pattern Recognition (MCPR 2023)

Abstract

The classification of Art media requires careful analysis due to the physical characteristics of the author’s work, such as shape, color, texture, medium, and historical period, which must be considered to correctly categorize the different Art media. This paper presents an experimental study of Art media classification based on pre-trained Convolutional Neural Networks (CNN), such as VGG16, ResNet50, and Xception, to demonstrate the robustness and improvement of the learning models. We trained them on WikiArt dataset, which is a reference in Art media. The same five art classes (Drawings, Engraving, Iconography, Painting, and Sculptures) are considered to validate the accuracy of the classification model. We trained using an NVIDIA Tesla K80 GPU in the Google Colaboratory (Colab) environment, and the Keras API with TensorFlow as Backend. The results show that all the CNNs tested present high correlation in the classification of Engravings and Drawings, due to the similarities of both classes. The best performance was obtained with the VGG16 architecture, with an accuracy of 75% using another dataset integrated with different works from the Del Prado and Louvre museums. This study confirms that the classification of Art media presents a challenge for CNN architecture due to the correlation found in the different classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8579
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10724
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abidin, D.: The effect of derived features on art genre classification with machine learning. Sakarya Univ. J. Sci. 25(6), 1275–1286

    Google Scholar 

  2. Cabrera-Ponce, A.A., Martinez-Carranza, J.: Onboard CNN-based processing for target detection and autonomous landing for MAVs. In: Figueroa Mora, K.M., Anzurez Marín, J., Cerda, J., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera-López, J.A. (eds.) MCPR 2020. LNCS, vol. 12088, pp. 195–208. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49076-8_19

    Chapter  Google Scholar 

  3. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. CoRR abs/ arXiv: 1610.02357 (2016). https://arxiv.org/abs/1610.02357

  4. Chu, W.T., Wu, Y.L.: Deep correlation features for image style classification. In: Proceedings of the 24th ACM International Conference on Multimedia, pp. 402–406 (2016)

    Google Scholar 

  5. Chu, W.T., Wu, Y.L.: Image style classification based on learnt deep correlation features. IEEE Trans. Multimedia 20(9), 2491–2502 (2018)

    Article  Google Scholar 

  6. Dataset. https://github.com/JanManuell/Art-Media-Classification--Dataset.git

  7. Fortuna-Cervantes, J.M., Ramírez-Torres, M.T., Mejía-Carlos, M., Martínez-Carranza, J., Murguía-Ibarra, J.S.: Texture classification for object detection in aerial navigation using transfer learning and wavelet-based features. In: Martinez-Carranza, J. (ed.) 12\(^{th}\) International Micro Air Vehicle Conference, Puebla, México. pp. 210–215 (Nov 2021). https://www.imavs.org/papers/2021/27.pdf, paper no. IMAV2021-27

  8. Gao, J., Zhou, H., Zhang, Y.: The performance of two cnn methods in artworks aesthetic feature recognition. In: Proceedings of the 2020 12th International Conference on Machine Learning and Computing, pp. 289–296 (2020)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/ arXiv: 1512.03385 (2015). https://arxiv.org/abs/1512.03385

  10. Ibarra-Vazquez, G., Olague, G., Chan-Ley, M., Puente, C., Soubervielle-Montalvo, C.: Brain programming is immune to adversarial attacks: Towards accurate and robust image classification using symbolic learning. Swarm Evol. Comput. 71, 101059 (2022)

    Article  Google Scholar 

  11. Ibarra-Vazquez, G., Olague, G., Puente, C., Chan-Ley, M., Soubervielle-Montalvo, C.: Automated design of accurate and robust image classifiers with brain programming. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1385–1393 (2021)

    Google Scholar 

  12. Kandel, I., Castelli, M.: Transfer learning with convolutional neural networks for diabetic retinopathy image classification a review. Appli. Sci. 10(6), 2021 (2020)

    Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  14. Kovalev, V.Y., Shishkin, A.G.: Painting style classification using deep neural networks. In: 2020 IEEE 3rd International Conference on Computer and Communication Engineering Technology (CCET), pp. 334–337. IEEE (2020)

    Google Scholar 

  15. Lombardi, T.E.: The classification of style in fine-art painting. Pace University (2005)

    Google Scholar 

  16. du Louvre, M.: https://collections.louvre.fr/en/

  17. Masilamani, G.K., Valli, R.: Art classification with pytorch using transfer learning. In: 2021 International Conference on System, Computation, Automation and Networking (ICSCAN), pp. 1–5. IEEE (2021)

    Google Scholar 

  18. Mikołajczyk, A., Grochowski, M.: Data augmentation for improving deep learning in image classification problem. In: 2018 international interdisciplinary PhD workshop (IIPhDW), pp. 117–122. IEEE (2018)

    Google Scholar 

  19. Olague, G., Ibarra-Vázquez, G., Chan-Ley, M., Puente, C., Soubervielle-Montalvo, C., Martinez, A.: A deep genetic programming based methodology for art media classification robust to adversarial perturbations. In: Bebis, G., et al. (eds.) ISVC 2020. LNCS, vol. 12509, pp. 68–79. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64556-4_6

    Chapter  Google Scholar 

  20. del Prado, M.N.: https://www.museodelprado.es/coleccion/obras-de-arte

  21. Research, G.: https://colab.research.google.com/

  22. Rodriguez, C.S., Lech, M., Pirogova, E.: Classification of style in fine-art paintings using transfer learning and weighted image patches. In: 2018 12th International Conference on Signal Processing and Communication Systems (ICSPCS), pp. 1–7. IEEE (2018)

    Google Scholar 

  23. Rojas-Aranda, J.L., Nunez-Varela, J.I., Cuevas-Tello, J.C., Rangel-Ramirez, G.: Fruit classification for retail stores using deep learning. In: Figueroa Mora, K.M., Anzurez Marín, J., Cerda, J., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera-López, J.A. (eds.) MCPR 2020. LNCS, vol. 12088, pp. 3–13. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49076-8_1

    Chapter  Google Scholar 

  24. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    Article  MATH  Google Scholar 

  25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  26. Srivastava, N.: Improving neural networks with dropout, vol. 182(566), p. 7. University of Toronto (2013)

    Google Scholar 

Download references

Acknowledgements

This work was founded by CONACYT through the grant “Convocatoria de Ciencia Básica y/o Ciencia de Frontera 2022”, project ID 320036.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Soubervielle-Montalvo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fortuna-Cervantes, J.M., Soubervielle-Montalvo, C., Perez-Cham, O.E., Peña-Gallardo, R., Puente, C. (2023). Experimental Study of the Performance of Convolutional Neural Networks Applied in Art Media Classification. In: Rodríguez-González, A.Y., Pérez-Espinosa, H., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Olvera-López, J.A. (eds) Pattern Recognition. MCPR 2023. Lecture Notes in Computer Science, vol 13902. Springer, Cham. https://doi.org/10.1007/978-3-031-33783-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33783-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33782-6

  • Online ISBN: 978-3-031-33783-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics