Bag of Tricks for Diabetic Retinopathy Grading of Ultra-Wide Optical Coherence Tomography Angiography Images | SpringerLink
Skip to main content

Bag of Tricks for Diabetic Retinopathy Grading of Ultra-Wide Optical Coherence Tomography Angiography Images

  • Conference paper
  • First Online:
Mitosis Domain Generalization and Diabetic Retinopathy Analysis (MIDOG 2022, DRAC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13597))

  • 293 Accesses

Abstract

The performance of disease classification can be improved through improvements in the training process, such as changes in data augmentation, optimization methods, and deep learning model architectures. In the Diabetic Retinopathy Analysis Challenge, we employ a series of techniques to enhance the performance of the diabetic retinopathy grading. In this paper, we examine a collection of these improvements and empirically evaluate their impact on the final model accuracy through experiments. Experiments show that these improvements can significantly improve the performance of the model. For this task, we use a single SeResNext to improve the validation score from 0.8322 to 0.8721.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7435
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9294
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Lechevallier, Y., Saporta, G. (eds.) COMPSTAT 2010, pp. 177–186. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-7908-2604-3_16

    Chapter  Google Scholar 

  2. Buslaev, A., Iglovikov, V.I., Khvedchenya, E., Parinov, A., Druzhinin, M., Kalinin, A.A.: Albumentations: fast and flexible image augmentations. Information 11(2), 125 (2020)

    Article  Google Scholar 

  3. Dai, L., et al.: A deep learning system for detecting diabetic retinopathy across the disease spectrum. Nat. Commun. 12(1), 1–11 (2021)

    Article  Google Scholar 

  4. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552 (2017)

  5. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12(7), 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  8. Liu, R., et al.: Deepdrid: diabetic retinopathy-grading and image quality estimation challenge. Patterns 3, 100512 (2022)

    Article  Google Scholar 

  9. Na, K.I., Lee, W.J., Kim, Y.K., Jin, W.J., Park, K.H.: Evaluation of optic nerve head and peripapillary choroidal vasculature using swept-source optical coherence tomography angiography. J. Glaucoma 26(7), 665 (2017)

    Article  Google Scholar 

  10. Nesterov, Y.: A method for unconstrained convex minimization problem with the rate of convergence (1983)

    Google Scholar 

  11. Reza, A.M.: Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J. VLSI Signal Process. Syst. Signal Image Video Technol. 38(1), 35–44 (2004)

    Article  Google Scholar 

  12. Sheng, B., et al.: An overview of artificial intelligence in diabetic retinopathy and other ocular diseases. Front. Public Health 10 (2022)

    Google Scholar 

  13. Sun, R., Li, Y., Zhang, T., Mao, Z., Wu, F., Zhang, Y.: Lesion-aware transformers for diabetic retinopathy grading. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10938–10947 (2021)

    Google Scholar 

  14. Wang, Z., Yin, Y., Shi, J., Fang, W., Li, H., Wang, X.: Zoom-in-net: deep mining lesions for diabetic retinopathy detection. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 267–275. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_31

    Chapter  Google Scholar 

  15. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  16. Zhou, Y., He, X., Huang, L., Liu, L., Zhu, F., Cui, S., Shao, L.: Collaborative learning of semi-supervised segmentation and classification for medical images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2079–2088 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renyu Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, R., Gu, Y., Wang, X., Lu, S. (2023). Bag of Tricks for Diabetic Retinopathy Grading of Ultra-Wide Optical Coherence Tomography Angiography Images. In: Sheng, B., Aubreville, M. (eds) Mitosis Domain Generalization and Diabetic Retinopathy Analysis. MIDOG DRAC 2022 2022. Lecture Notes in Computer Science, vol 13597. Springer, Cham. https://doi.org/10.1007/978-3-031-33658-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33658-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33657-7

  • Online ISBN: 978-3-031-33658-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics