Abstract
The performance of disease classification can be improved through improvements in the training process, such as changes in data augmentation, optimization methods, and deep learning model architectures. In the Diabetic Retinopathy Analysis Challenge, we employ a series of techniques to enhance the performance of the diabetic retinopathy grading. In this paper, we examine a collection of these improvements and empirically evaluate their impact on the final model accuracy through experiments. Experiments show that these improvements can significantly improve the performance of the model. For this task, we use a single SeResNext to improve the validation score from 0.8322 to 0.8721.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Lechevallier, Y., Saporta, G. (eds.) COMPSTAT 2010, pp. 177–186. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-7908-2604-3_16
Buslaev, A., Iglovikov, V.I., Khvedchenya, E., Parinov, A., Druzhinin, M., Kalinin, A.A.: Albumentations: fast and flexible image augmentations. Information 11(2), 125 (2020)
Dai, L., et al.: A deep learning system for detecting diabetic retinopathy across the disease spectrum. Nat. Commun. 12(1), 1–11 (2021)
DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552 (2017)
Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12(7), 2121–2159 (2011)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Liu, R., et al.: Deepdrid: diabetic retinopathy-grading and image quality estimation challenge. Patterns 3, 100512 (2022)
Na, K.I., Lee, W.J., Kim, Y.K., Jin, W.J., Park, K.H.: Evaluation of optic nerve head and peripapillary choroidal vasculature using swept-source optical coherence tomography angiography. J. Glaucoma 26(7), 665 (2017)
Nesterov, Y.: A method for unconstrained convex minimization problem with the rate of convergence (1983)
Reza, A.M.: Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J. VLSI Signal Process. Syst. Signal Image Video Technol. 38(1), 35–44 (2004)
Sheng, B., et al.: An overview of artificial intelligence in diabetic retinopathy and other ocular diseases. Front. Public Health 10 (2022)
Sun, R., Li, Y., Zhang, T., Mao, Z., Wu, F., Zhang, Y.: Lesion-aware transformers for diabetic retinopathy grading. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10938–10947 (2021)
Wang, Z., Yin, Y., Shi, J., Fang, W., Li, H., Wang, X.: Zoom-in-net: deep mining lesions for diabetic retinopathy detection. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 267–275. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_31
Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)
Zhou, Y., He, X., Huang, L., Liu, L., Zhu, F., Cui, S., Shao, L.: Collaborative learning of semi-supervised segmentation and classification for medical images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2079–2088 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, R., Gu, Y., Wang, X., Lu, S. (2023). Bag of Tricks for Diabetic Retinopathy Grading of Ultra-Wide Optical Coherence Tomography Angiography Images. In: Sheng, B., Aubreville, M. (eds) Mitosis Domain Generalization and Diabetic Retinopathy Analysis. MIDOG DRAC 2022 2022. Lecture Notes in Computer Science, vol 13597. Springer, Cham. https://doi.org/10.1007/978-3-031-33658-4_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-33658-4_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-33657-7
Online ISBN: 978-3-031-33658-4
eBook Packages: Computer ScienceComputer Science (R0)