Rudin-Shapiro Sums via Automata Theory and Logic | SpringerLink
Skip to main content

Rudin-Shapiro Sums via Automata Theory and Logic

  • Conference paper
  • First Online:
Combinatorics on Words (WORDS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13899))

Included in the following conference series:

Abstract

We show how to obtain, via a unified framework provided by logic and automata theory, many classical results of Brillhart and Morton on Rudin-Shapiro sums. The techniques also facilitate easy proofs for new results.

Research of Narad Rampersad is supported by NSERC Grant number 2019-04111. Research of Jeffrey Shallit is supported by NSERC Grant number 2018-04118.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    One can make the case that these definitions are “wrong”, in the sense that many results become significantly simpler to state if the sums are taken over the range \(0 \le i < n\) instead. But the definitions of Brillhart-Morton are now very well-established, and using a different indexing would also make it harder to compare our results with theirs.

  2. 2.

    The main exceptions are their results about the limit points of \(s(n)/\sqrt{n}\) and \(t(n)/\sqrt{n}\).

  3. 3.

    In fact, all the Walnut code in this paper runs in a matter of milliseconds.

  4. 4.

    Maple code implementing this algorithm is available from the second author.

References

  1. Allouche, J.-P.: Automates finis en théorie des nombres. Exposition. Math. 5, 239–266 (1987)

    MathSciNet  MATH  Google Scholar 

  2. Berstel, J., Reutenauer, C.: Noncommutative Rational Series With Applications, vol. 137. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  3. Brillhart, J., Morton, P.: Über Summen von Rudin-Shapiroschen Koeffizienten. Illinois J. Math. 22, 126–148 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brillhart, J., Erdős, P., Morton, P.: On sums of Rudin-Shapiro coefficients. II. Pacific J. Math. 107, 39–69 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brillhart, J., Morton, P.: A case study in mathematical research: the Golay-Rudin-Shapiro sequence. Amer. Math. Monthly 103, 854–869 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carpi, A., Maggi, C.: On synchronized sequences and their separators. RAIRO Inform. Théor. App. 35, 513–524 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cobham, A.: On the base-dependence of sets of numbers recognizable by finite automata. Math. Systems Theory 3, 186–192 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cobham, A.: Uniform tag sequences. Math. Systems Theory 6, 164–192 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dekking, F.M., Mendès France, M., van der Poorten, A.J.: Folds! Math. Intelligencer 4, 130–138, 173–181, 190–195 (1982). Erratum 5, 5 (1983)

    Google Scholar 

  10. Golay, M.J.E.: Multi-slit spectrometry. J. Optical Soc. Amer. 39, 437–444 (1949)

    Article  Google Scholar 

  11. Golay, M.J.E.: Static multislit spectrometry and its application to the panoramic display of infrared spectra. J. Opt. Soc. Am. 41, 468–472 (1951)

    Article  Google Scholar 

  12. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Boston (1979)

    Google Scholar 

  13. Kahane, J.-P.: Some Random Series of Functions. Cambridge Studies in Advanced Mathematics, vol. 5, 2nd edn. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  14. Konieczny, J.: Gowers norms for the Thue-Morse and Rudin-Shapiro sequences. Annales de l’Institut Fourier 69, 1897–1913 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lafrance, P., Rampersad, N., Yee, R.: Some properties of a Rudin-Shapiro-like sequence. Adv. Appl. Math. 63, 19–40 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mauduit, C., Rivat, J.: Prime numbers along Rudin-Shapiro sequences. J. Eur. Math. Soc. 17, 2595–2642 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mendès France, M., Tenenbaum, G.: Dimension des courbes planes, papiers pliés et suites de Rudin-Shapiro. Bull. Soc. Math. France 109, 207–215 (1981)

    Google Scholar 

  18. Mendès France, M.: Paper folding, space-filling curves and Rudin-Shapiro sequences. In: Papers in Algebra, Analysis and Statistics, vol. 9. Contemporary Mathematics, American Mathematical Society, pp. 85–95 (1982)

    Google Scholar 

  19. Mousavi, H.: Automatic theorem proving in Walnut. Arxiv preprint arXiv:1603.06017 [cs.FL] (2016)

  20. Rampersad, N., Shallit, J.: Rudin-Shapiro sums via automata theory and logic. Arxiv preprint arXiv:2302.00405 [math.NT], 1 February 2023

  21. Rudin, W.: Some theorems on Fourier coefficients. Proc. Am. Math. Soc. 10, 855–859 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shallit, J.: Synchronized sequences. In: Lecroq, T., Puzynina, S. (eds.) WORDS 2021. LNCS, vol. 12847, pp. 1–19. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85088-3_1

    Chapter  Google Scholar 

  23. Shallit, J.: The Logical Approach To Automatic Sequences: Exploring Combinatorics on Words with Walnut, vol. 482. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (2022)

    Google Scholar 

  24. Shallit, J.: Rarefied Thue-Morse sums via automata theory and logic. Arxiv preprint ArXiv:2302.09436 [math.NT], 18 February 2023. https://arxiv.org/abs/2302.09436

  25. Shapiro, H.S.: Extremal problems for polynomials and power series. Master’s thesis, MIT (1951)

    Google Scholar 

  26. Sloane, N.J.A., et al.: The On-line Encyclopedia of Integer Sequences (2023). https://oeis.org

Download references

Acknowledgments

We are grateful to Jean-Paul Allouche and to the referees for several helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Shallit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rampersad, N., Shallit, J. (2023). Rudin-Shapiro Sums via Automata Theory and Logic. In: Frid, A., Mercaş, R. (eds) Combinatorics on Words. WORDS 2023. Lecture Notes in Computer Science, vol 13899. Springer, Cham. https://doi.org/10.1007/978-3-031-33180-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33180-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33179-4

  • Online ISBN: 978-3-031-33180-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics