Correcting for Granularity Bias in Modularity-Based Community Detection Methods | SpringerLink
Skip to main content

Correcting for Granularity Bias in Modularity-Based Community Detection Methods

  • Conference paper
  • First Online:
Algorithms and Models for the Web Graph (WAW 2023)

Abstract

Maximizing modularity is currently the most widely-used community detection method in applications. Modularity comes with a parameter that indirectly controls the granularity of the resulting clustering. Moreover, one can choose this parameter in such a way that modularity maximization becomes equivalent to maximizing the likelihood of a stochastic block model. Thus, this method is statistically justified, while at the same time, it is known to have a bias towards fine-grained clusterings. In this work, we introduce a heuristic to correct for this bias. This heuristic is based on prior work where modularity is described in geometric terms. This has led to a broad generalization of modularity-based community detection methods, and the heuristic presented in this paper applies to each of them. We justify the heuristic by describing a relation between several distances that we observe to hold in many instances. We prove that, assuming the validity of this relation, our heuristic leads to a clustering of the same granularity as the ground-truth clustering. We compare our heuristic to likelihood-based community detection methods on several synthetic graphs and show that our method indeed results in clusterings with granularity closer to the granularity of the ground-truth clustering. Moreover, our heuristic often outperforms likelihood maximization in terms of similarity to the ground-truth clustering.

Supported by the Netherlands Organisation for Scientific Research (NWO) through the Gravitation NETWORKS grant no. 024.002.003.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6291
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7864
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Or, equivalently, the Chung-Lu model.

  2. 2.

    https://github.com/MartijnGosgens/hyperspherical_community_detection.

  3. 3.

    We use \(\xi =0.25\), degree bounds 4 and 100, community-size bounds 10 and \(\lfloor n^{3/4}\rfloor \).

References

  1. Arenas, A., Fernandez, A., Gomez, S.: Analysis of the structure of complex networks at different resolution levels. New J. Phys. 10(5), 053039 (2008)

    Article  Google Scholar 

  2. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008 (2008)

    Article  MATH  Google Scholar 

  3. Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. 104(1), 36–41 (2007). https://doi.org/10.1073/pnas.0605965104. https://www.pnas.org/content/104/1/36

  4. Gösgens, M., van der Hofstad, R., Litvak, N.: The hyperspherical geometry of community detection: modularity as a distance. J. Mach. Learn. Res. 24, 1–33 (2023)

    Google Scholar 

  5. Gösgens, M., Zhiyanov, A., Tikhonov, A., Prokhorenkova, L.: Good classification measures and how to find them. Adv. Neural. Inf. Process. Syst. 34, 17136–17147 (2021)

    Google Scholar 

  6. Gösgens, M.M., Tikhonov, A., Prokhorenkova, L.: Systematic analysis of cluster similarity indices: how to validate validation measures. In: International Conference on Machine Learning, pp. 3799–3808. PMLR (2021)

    Google Scholar 

  7. Hunter, P.R., Gaston, M.A.: Numerical index of the discriminatory ability of typing systems: an application of simpson’s index of diversity. J. Clin. Microbiol. 26(11), 2465–2466 (1988)

    Article  Google Scholar 

  8. Jaccard, P.: The distribution of the flora in the alpine zone. 1. New Phytol. 11(2), 37–50 (1912)

    Google Scholar 

  9. Kamiński, B., Pankratz, B., Prałat, P., Théberge, F.: Modularity of the ABCD random graph model with community structure. J. Complex Netw. 10(6), cnac050 (2022)

    Google Scholar 

  10. Kamiński, B., Prałat, P., Théberge, F.: Artificial benchmark for community detection (ABCD)-fast random graph model with community structure. Netw. Sci. 9(2), 153–178 (2021)

    Article  Google Scholar 

  11. Kumpula, J.M., Saramäki, J., Kaski, K., Kertész, J.: Limited resolution in complex network community detection with Potts model approach. Eur. Phys. J. B 56(1), 41–45 (2007)

    Article  Google Scholar 

  12. Lancichinetti, A., Fortunato, S.: Limits of modularity maximization in community detection. Phys. Rev. E 84(6), 066122 (2011)

    Article  Google Scholar 

  13. Lichev, L., Mitsche, D.: On the modularity of 3-regular random graphs and random graphs with given degree sequences. Random Struct. Algorithms 61(4), 754–802 (2022)

    Article  MathSciNet  Google Scholar 

  14. McDiarmid, C., Skerman, F.: Modularity of erdős-rényi random graphs. Random Struct. Algorithms 57(1), 211–243 (2020)

    Article  MATH  Google Scholar 

  15. Newman, M.E.: Equivalence between modularity optimization and maximum likelihood methods for community detection. Phys. Rev. E 94(5), 052315 (2016)

    Article  Google Scholar 

  16. Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)

    Article  Google Scholar 

  17. Peixoto, T.P.: Descriptive vs. inferential community detection: pitfalls, myths and half-truths. arXiv preprint arXiv:2112.00183 (2021)

  18. Prokhorenkova, L.: Using synthetic networks for parameter tuning in community detection. In: Avrachenkov, K., Prałat, P., Ye, N. (eds.) WAW 2019. LNCS, vol. 11631, pp. 1–15. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25070-6_1

    Chapter  Google Scholar 

  19. Prokhorenkova, L., Tikhonov, A.: Community detection through likelihood optimization: in search of a sound model. In: The World Wide Web Conference, pp. 1498–1508 (2019)

    Google Scholar 

  20. Ostroumova Prokhorenkova, L., Prałat, P., Raigorodskii, A.: Modularity of complex networks models. In: Bonato, A., Graham, F.C., Prałat, P. (eds.) WAW 2016. LNCS, vol. 10088, pp. 115–126. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49787-7_10

    Chapter  MATH  Google Scholar 

  21. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971)

    Article  Google Scholar 

  22. Reichardt, J., Bornholdt, S.: Statistical mechanics of community detection. Phys. Rev. E 74(1), 016110 (2006)

    Article  MathSciNet  Google Scholar 

  23. Traag, V.A., Van Dooren, P., Nesterov, Y.: Narrow scope for resolution-limit-free community detection. Phys. Rev. E 84(1), 016114 (2011)

    Article  Google Scholar 

  24. Zhang, L., Peixoto, T.P.: Statistical inference of assortative community structures. Phys. Rev. Res. 2(4), 043271 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martijn Gösgens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gösgens, M., van der Hofstad, R., Litvak, N. (2023). Correcting for Granularity Bias in Modularity-Based Community Detection Methods. In: Dewar, M., Prałat, P., Szufel, P., Théberge, F., Wrzosek, M. (eds) Algorithms and Models for the Web Graph. WAW 2023. Lecture Notes in Computer Science, vol 13894. Springer, Cham. https://doi.org/10.1007/978-3-031-32296-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32296-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32295-2

  • Online ISBN: 978-3-031-32296-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics