Advancement in Spectrum Sensing Algorithms in Cognitive Radio Architecture | SpringerLink
Skip to main content

Advancement in Spectrum Sensing Algorithms in Cognitive Radio Architecture

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1776))

Included in the following conference series:

  • 513 Accesses

Abstract

Cognitive Radio Networks (CRNs) consider as one of the advanced and emerging technologies that can be employed in 5G/6G and beyond to satisfy the high data rate demand of wireless communication by reducing the channel scarcity problem. The objective of CRN is to permit the unlicensed/secondary users (SUs) to efficiently utilize the available licensed spectrum without affecting the operations of licensed/primary users (PUs). While implementing CRNs, SUs have to face several challenges such as the detection of PUs as well as resource allocation problems, which occur due to the interference between PU and SU, and between SU and SU. CRN faces problems like inter-symbol interference (ISI) and a lower data rate. Hence to reduce the problem of ISI and to achieve a higher data rate, the Orthogonal Frequency Division Multiplexing (OFDM) technique utilized in CRN. It proves advantageous since it lowers the ISI, pro-vides interoperability, and also improves spectrum sensing. However, OFDM exhibits a spectrum leakage problem. As a solution to this, Filter Bank based Multi-Carrier (FBMC) technique can be employed in the cognitive radio (CR) scenarios. In this paper, we explore different directions and applications where FBMC can be employed with CRNs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mitola, J., Maguire, G.: Cognitive radio: making software radios more personal. IEEE Pers. Commun. 6(4), 13–18 (1999)

    Article  Google Scholar 

  2. Farhang-Boroujeny, B.: Filter bank spectrum sensing for cognitive radios. IEEE Trans. Signal Process. 56(5), 1801–1811 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wang, F.: Cognitive radio networks and security: a survey. J. Netw. Comput. Appl.1691–1708 (2014)

    Google Scholar 

  4. Masonta, M.T., Mzyece, M., Ntlatlapa, N.: Spectrum decision in cognitive radio networks: a survey. IEEE Commun. Surv. Tutor. 15(3), 1088–1107 (2012)

    Article  Google Scholar 

  5. Zhang, H.: Filter Bank based Multicarrier (FBMC) for Cognitive Radio Systems. Networking and Internet Architecture. Thesis, National Conservatory of Arts and Crafts, University of Wuhan (China), (2010)

    Google Scholar 

  6. Mitola, J. I.: Cognitive radio. An integrated agent architecture for software defined radio (2002)

    Google Scholar 

  7. Anusha, M., Vemuru, S., Gunasekhar, T.: Transmission protocols in cognitive radio mesh networks. Int. J. Elect. Comput. Eng. (IJECE) 5(6), 1446 (2015). https://doi.org/10.11591/ijece.v5i6.pp1446-1451

    Article  Google Scholar 

  8. Budiarjo, I., Nikookar, H., Ligthart, L.P.: Cognitive radio modulation techniques. IEEE Signal Process. Mag. 25(6), 24–34 (2008)

    Article  Google Scholar 

  9. Giannakis, G.B., Tsatsanis, M.K.: Signal detection and classification using matched filtering and higher order statistics. IEEE Trans. Acoust. Speech Signal Process. 38(7), 1284–1296 (1990)

    Article  MATH  Google Scholar 

  10. Sharma, I., Singh, G.: A Novel approach for spectrum access using fuzzy logic in cognitive radio. Int. J. Inf. Technol. Comput. Sci. 8, 1–9 (2012)

    Google Scholar 

  11. Ghozzi, M., Dohler, M., Marx, F., Palicot, J.: Cognitive radio: methods for the detection of free bands. Phys. Rep. 7(7), 794–804 (2006)

    Google Scholar 

  12. Wang, B., Liu, K.J.R.: Advances in cognitive radio networks: a survey. IEEE J. Sel. Top. Signal Process. 5(1), 5–23 (2011)

    Article  MathSciNet  Google Scholar 

  13. Amini, P., Kempter, R., Chen, R.R., Lin, L., Farhang-Boroujeny, B.: Filter bank multitone: a physical layer candidate for cognitive radios. In: Proceedings of the SDR Forum Technical Conference, pp. 14–18 (2005)

    Google Scholar 

  14. Farhang-Boroujeny, B.: Multicarrier modulation with blind detection capability using cosine modulated filter banks. IEEE Trans. Commun. 51(12), 2057–2070 (2003)

    Article  MathSciNet  Google Scholar 

  15. Manesh, M.R., Kaabouch, N., Reyes, H., Hu, W.C.: A Bayesian model of the aggregate interference power in cognitive radio networks. In: 2016 IEEE 7th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), pp. 1–7. IEEE (2016)

    Google Scholar 

  16. Weiss, T.A., Jondral, F.K.: Spectrum pooling: an innovative strategy for the enhancement of spectrum efficiency. IEEE Commun. Mag. 42(3), S8-14 (2004)

    Article  Google Scholar 

  17. Salahdine, F., Kaabouch, N., El Ghazi, H.: Techniques for dealing with uncertainty in cognitive radio networks. In: 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC), pp. 1–6. IEEE (2017)

    Google Scholar 

  18. Sheikh, J.A., Mir, Z.I., Mufti, M., Parah, S.A., Bhat, G.M.: A new Filter Bank Multicarrier (FBMC) based cognitive radio for 5g networks using optimization techniques. Wirel. Pers. Commun. 112(2), 1265–1280 (2020). https://doi.org/10.1007/s11277-020-07101-y

    Article  Google Scholar 

  19. Arjoune, Y., Kaabouch, N.: A comprehensive survey on spectrum sensing in cognitive radio networks: recent advances, new challenges, and future research directions. Sensors 19(1), 126 (2019)

    Article  Google Scholar 

  20. Amini, P., Kempter, R., Farhang-Boroujeny, B.: A comparison of alternative filter bank multicarrier methods for cognitive radio systems. In: Proceedings of the SDR Technical Conference and Product Exposition (2006)

    Google Scholar 

  21. Cabric, D., Mishra, S.M., Brodersen, R.W.: Implementation issues in spectrum sensing for cognitive radios. In: Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 772–776. IEEE (2004)

    Google Scholar 

  22. Kumar, A., Sharma, I.: A new method for designing multiplierless two-channel filter bank using shifted-Chebyshev polynomials. Int. J. Electron. 106(4), 537–552 (2019)

    Article  Google Scholar 

  23. Sharma, I., Kumar, A., Singh, G.K.: Adjustable window based design of multiplier-less cosine modulated filter bank using swarm optimization algorithms. AEU-Int. J. Electron. Commun. 70(1), 85–94 (2016)

    Article  Google Scholar 

  24. Wang, H., Wu, B., Yao, Y., Qin, M.: Wideband spectrum sensing based on reconfigurable filter bank in cognitive radio. Future Internet 11, 244 (2019)

    Article  Google Scholar 

  25. Javed, J.N., Khalil, M., Shabbir A.,: A survey on cognitive radio spectrum sensing: classifications and performance comparison. In: 2019 International Conference on Innovative Computing (ICIC), pp. 1–8 (2019)

    Google Scholar 

  26. Dikmese, S., Lamichhane, K., Renfors, M.: Novel filter bank-based cooperative spectrum sensing under practical challenges for beyond 5G cognitive radios. EURASIP J. Wirel. Commun. Netw. 2021(1), 1–27 (2021). https://doi.org/10.1186/s13638-020-01889-w

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ila Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shambharkar, T., Sharma, I., Maurya, S. (2023). Advancement in Spectrum Sensing Algorithms in Cognitive Radio Architecture. In: Gupta, D., Bhurchandi, K., Murala, S., Raman, B., Kumar, S. (eds) Computer Vision and Image Processing. CVIP 2022. Communications in Computer and Information Science, vol 1776. Springer, Cham. https://doi.org/10.1007/978-3-031-31407-0_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31407-0_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31406-3

  • Online ISBN: 978-3-031-31407-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics