Multi-authority ABE for Non-monotonic Access Structures | SpringerLink
Skip to main content

Multi-authority ABE for Non-monotonic Access Structures

  • Conference paper
  • First Online:
Public-Key Cryptography – PKC 2023 (PKC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13941))

Included in the following conference series:

  • 1113 Accesses

Abstract

Attribute-Based Encryption (ABE) is a cryptographic primitive which supports fine-grained access control on encrypted data, making it an appealing building block for many applications. Multi-Authority Attribute-Based Encryption (MA-ABE) is a generalization of ABE where the central authority is distributed across several independent parties.

We provide the first MA-ABE scheme from asymmetric prime-order pairings where no trusted setup is needed and where the attribute universe of each authority is unbounded. Moreover, it is the first to handle non-monotonic access structures. These features broaden the applicability and improve the efficiency of our scheme. Our construction makes a modular use of Functional Encryption schemes with fine-grained access control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The restriction which requires that the adversary provide the secret keys of the corrupted authorities in \(\varPi _\textsf{corr}\) can be lifted via a generic use of Zero-Knowledge Argument of Knowledge. See Remark 3 for further details.

  2. 2.

    See Fig. 1 for the definition of the algorithm \(\textsf{Share}\).

  3. 3.

    Strictly speaking, the DDH as per Definition 3 is stated with \(r_2 \leftarrow _R\mathbb {Z}_p\), not \(r_2 \leftarrow _R\mathbb {Z}_p^*\) used here. This makes no difference, however, since the two distributions are within negligible statistical distance.

  4. 4.

    Again, strictly speaking, the DDH as per Definition 3 is stated with \(r_2 \leftarrow _R\mathbb {Z}_p\), not \(r_2 \leftarrow _R\mathbb {Z}_p^*\) but as we argued above, this makes no difference since the two distributions are within negligible statistical distance.

References

  1. Abdalla, M., Catalano, D., Gay, R., Ursu, B.: Inner-product functional encryption with fine-grained access control. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 467–497. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_16

    Chapter  Google Scholar 

  2. Agrawal, S., Koppula, V., Waters, B.: Impossibility of simulation secure functional encryption even with random oracles. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239, pp. 659–688. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6_24

    Chapter  MATH  Google Scholar 

  3. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_12

    Chapter  Google Scholar 

  4. Agrawal, S., Yadav, A., Yamada, S.: Multi-input attribute based encryption and predicate encryption. In: Dodis, Y., Shrimpton, T. (eds) Advances in Cryptology – CRYPTO 2022. CRYPTO 2022. LNCS, vol. 13507, pp. 590–621. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15802-5_21

  5. Beimel, A.: Secure Schemes for Secret Sharing and Key Distribution. Ph.D, Technion - Israel Institute of Technology (1996)

    Google Scholar 

  6. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_16

    Chapter  Google Scholar 

  7. Chase, M., Chow, S.S.M.: Improving privacy and security in multi-authority attribute-based encryption. In: Al-Shaer, E., Jha, S., Keromytis, A.D. (eds.) ACM CCS 2009, pp. 121–130. ACM Press, November 2009

    Google Scholar 

  8. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_28

    Chapter  Google Scholar 

  9. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_4

    Chapter  Google Scholar 

  10. Datta, P., Komargodski, I., Waters, B.: Decentralized multi-authority ABE for DNFs from LWE. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 177–209. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_7

    Chapter  Google Scholar 

  11. Datta, P., Komargodski, I., Waters, B.: Decentralized multi-authority ABE for NC \(\hat{}\) 1 from computational-BDH. Cryptology ePrint Archive (2021)

    Google Scholar 

  12. Dufour-Sans, E., Pointcheval, D.: Unbounded inner-product functional encryption with succinct keys. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 426–441. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21568-2_21

    Chapter  Google Scholar 

  13. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM CCS 2006, pp. 89–98. ACM Press (2006). Available as Cryptology ePrint Archive Report 2006/309

    Google Scholar 

  14. Kim, S.: Multi-authority attribute-based encryption from LWE in the OT model. IACR Cryptology ePrint Archive 2019:280 (2019)

    Google Scholar 

  15. Karchmer, M., Wigderson, A.: On span programs. In: Structure in Complexity Theory Conference, 1993, Proceedings of the Eighth Annual, pp. 102–111, May 1993

    Google Scholar 

  16. Lin, H., Cao, Z., Liang, X., Shao, J.: Secure threshold multi authority attribute based encryption without a central authority. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 426–436. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89754-5_33

    Chapter  Google Scholar 

  17. Lewko, A.: Tools for simulating features of composite order bilinear groups in the prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_20

    Chapter  MATH  Google Scholar 

  18. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_31

    Chapter  Google Scholar 

  19. Michalevsky, Y., Joye, M.: Decentralized policy-hiding ABE with receiver privacy. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS 2018. LNCS, vol. 11099, pp. 548–567. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98989-1_27

    Chapter  Google Scholar 

  20. Müller, S., Katzenbeisser, S., Eckert, C.: Distributed attribute-based encryption. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 20–36. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00730-9_2

    Chapter  Google Scholar 

  21. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-monotonic access structures. In: Ning, P., De Capitani di Vimercati, S., Syverson, P.F. (eds.) ACM CCS 2007, pp. 195–203. ACM Press, October 2007

    Google Scholar 

  22. Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_13

    Chapter  Google Scholar 

  23. Okamoto, T., Takashima, K.: Decentralized attribute-based signatures. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 125–142. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_9

    Chapter  Google Scholar 

  24. Rogaway, P.: The moral character of cryptographic work. IACR Cryptology ePrint Archive 2015:1162 (2015)

    Google Scholar 

  25. Rouselakis, Y., Waters, B.: Efficient statically-secure large-universe multi-authority attribute-based encryption. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 315–332. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7_19

    Chapter  Google Scholar 

  26. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_27

    Chapter  Google Scholar 

  27. Tomida, J., Takashima, K.: Unbounded inner product functional encryption from bilinear maps. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 609–639. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_21

    Chapter  Google Scholar 

  28. Wang, Z., Fan, X., Liu, F.-H.: FE for inner products and its application to decentralized ABE. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 97–127. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6_4

    Chapter  Google Scholar 

  29. Waters, B., Wee, H., Wu, D.J.: Multi-authority ABE from lattices without random oracles. In: Kiltz, E., Vaikuntanathan, V. (eds.) Theory of Cryptography Conference. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22318-1_23

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Gay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ambrona, M., Gay, R. (2023). Multi-authority ABE for Non-monotonic Access Structures. In: Boldyreva, A., Kolesnikov, V. (eds) Public-Key Cryptography – PKC 2023. PKC 2023. Lecture Notes in Computer Science, vol 13941. Springer, Cham. https://doi.org/10.1007/978-3-031-31371-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31371-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31370-7

  • Online ISBN: 978-3-031-31371-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics