Abstract
Attribute-Based Encryption (ABE) is a cryptographic primitive which supports fine-grained access control on encrypted data, making it an appealing building block for many applications. Multi-Authority Attribute-Based Encryption (MA-ABE) is a generalization of ABE where the central authority is distributed across several independent parties.
We provide the first MA-ABE scheme from asymmetric prime-order pairings where no trusted setup is needed and where the attribute universe of each authority is unbounded. Moreover, it is the first to handle non-monotonic access structures. These features broaden the applicability and improve the efficiency of our scheme. Our construction makes a modular use of Functional Encryption schemes with fine-grained access control.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The restriction which requires that the adversary provide the secret keys of the corrupted authorities in \(\varPi _\textsf{corr}\) can be lifted via a generic use of Zero-Knowledge Argument of Knowledge. See Remark 3 for further details.
- 2.
See Fig. 1 for the definition of the algorithm \(\textsf{Share}\).
- 3.
Strictly speaking, the DDH as per Definition 3 is stated with \(r_2 \leftarrow _R\mathbb {Z}_p\), not \(r_2 \leftarrow _R\mathbb {Z}_p^*\) used here. This makes no difference, however, since the two distributions are within negligible statistical distance.
- 4.
Again, strictly speaking, the DDH as per Definition 3 is stated with \(r_2 \leftarrow _R\mathbb {Z}_p\), not \(r_2 \leftarrow _R\mathbb {Z}_p^*\) but as we argued above, this makes no difference since the two distributions are within negligible statistical distance.
References
Abdalla, M., Catalano, D., Gay, R., Ursu, B.: Inner-product functional encryption with fine-grained access control. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 467–497. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_16
Agrawal, S., Koppula, V., Waters, B.: Impossibility of simulation secure functional encryption even with random oracles. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239, pp. 659–688. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6_24
Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_12
Agrawal, S., Yadav, A., Yamada, S.: Multi-input attribute based encryption and predicate encryption. In: Dodis, Y., Shrimpton, T. (eds) Advances in Cryptology – CRYPTO 2022. CRYPTO 2022. LNCS, vol. 13507, pp. 590–621. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15802-5_21
Beimel, A.: Secure Schemes for Secret Sharing and Key Distribution. Ph.D, Technion - Israel Institute of Technology (1996)
Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_16
Chase, M., Chow, S.S.M.: Improving privacy and security in multi-authority attribute-based encryption. In: Al-Shaer, E., Jha, S., Keromytis, A.D. (eds.) ACM CCS 2009, pp. 121–130. ACM Press, November 2009
Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_28
Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_4
Datta, P., Komargodski, I., Waters, B.: Decentralized multi-authority ABE for DNFs from LWE. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 177–209. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_7
Datta, P., Komargodski, I., Waters, B.: Decentralized multi-authority ABE for NC \(\hat{}\) 1 from computational-BDH. Cryptology ePrint Archive (2021)
Dufour-Sans, E., Pointcheval, D.: Unbounded inner-product functional encryption with succinct keys. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 426–441. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21568-2_21
Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM CCS 2006, pp. 89–98. ACM Press (2006). Available as Cryptology ePrint Archive Report 2006/309
Kim, S.: Multi-authority attribute-based encryption from LWE in the OT model. IACR Cryptology ePrint Archive 2019:280 (2019)
Karchmer, M., Wigderson, A.: On span programs. In: Structure in Complexity Theory Conference, 1993, Proceedings of the Eighth Annual, pp. 102–111, May 1993
Lin, H., Cao, Z., Liang, X., Shao, J.: Secure threshold multi authority attribute based encryption without a central authority. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 426–436. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89754-5_33
Lewko, A.: Tools for simulating features of composite order bilinear groups in the prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_20
Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_31
Michalevsky, Y., Joye, M.: Decentralized policy-hiding ABE with receiver privacy. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS 2018. LNCS, vol. 11099, pp. 548–567. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98989-1_27
Müller, S., Katzenbeisser, S., Eckert, C.: Distributed attribute-based encryption. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 20–36. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00730-9_2
Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-monotonic access structures. In: Ning, P., De Capitani di Vimercati, S., Syverson, P.F. (eds.) ACM CCS 2007, pp. 195–203. ACM Press, October 2007
Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_13
Okamoto, T., Takashima, K.: Decentralized attribute-based signatures. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 125–142. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_9
Rogaway, P.: The moral character of cryptographic work. IACR Cryptology ePrint Archive 2015:1162 (2015)
Rouselakis, Y., Waters, B.: Efficient statically-secure large-universe multi-authority attribute-based encryption. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 315–332. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7_19
Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_27
Tomida, J., Takashima, K.: Unbounded inner product functional encryption from bilinear maps. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 609–639. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_21
Wang, Z., Fan, X., Liu, F.-H.: FE for inner products and its application to decentralized ABE. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 97–127. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6_4
Waters, B., Wee, H., Wu, D.J.: Multi-authority ABE from lattices without random oracles. In: Kiltz, E., Vaikuntanathan, V. (eds.) Theory of Cryptography Conference. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22318-1_23
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 International Association for Cryptologic Research
About this paper
Cite this paper
Ambrona, M., Gay, R. (2023). Multi-authority ABE for Non-monotonic Access Structures. In: Boldyreva, A., Kolesnikov, V. (eds) Public-Key Cryptography – PKC 2023. PKC 2023. Lecture Notes in Computer Science, vol 13941. Springer, Cham. https://doi.org/10.1007/978-3-031-31371-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-31371-4_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-31370-7
Online ISBN: 978-3-031-31371-4
eBook Packages: Computer ScienceComputer Science (R0)