Using a Graph Transformer Network to Predict 3D Coordinates of Proteins via Geometric Algebra Modelling | SpringerLink
Skip to main content

Using a Graph Transformer Network to Predict 3D Coordinates of Proteins via Geometric Algebra Modelling

  • Conference paper
  • First Online:
Empowering Novel Geometric Algebra for Graphics and Engineering (ENGAGE 2022)

Abstract

The state of the art in protein structure prediction (PSP) is currently achieved by complex deep learning pipelines that require several input features. In this paper, we demonstrate the relevance of Geometric Algebra (GA) for modelling protein features in PSP. We do so by proposing a novel GA metric based on the relative orientations of amino acid residues. We then employ this metric as an additional input feature to a Graph Transformer (GT) to aid the prediction of the 3D coordinates of a protein. Adding this GA-based orientational information improves the accuracy of the predicted coordinates even after few learning iterations and on a small dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6291
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7864
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jumper, J., et al.: Highly accurate protein structure prediction with AlphaFold. Nature 596(7873), 583–589 (2021)

    Article  Google Scholar 

  2. Thornton, J.M., Laskowski, R.A., Borkakoti, N.: AlphaFold heralds a data-driven revolution in biology and medicine. Nat. Med. 27(10), 1666–1669 (2021)

    Article  Google Scholar 

  3. Perrakis, A., Sixma, T.K.: AI revolutions in biology: the joys and perils of AlphaFold. EMBO Rep. 22(11), e54046 (2021)

    Article  Google Scholar 

  4. Torrisi, M., Pollastri, G., Le, Q.: Deep learning methods in protein structure prediction. Comput. Struct. Biotechnol. J. 18, 1301–1310 (2020)

    Article  Google Scholar 

  5. Kandathil, S.M., Greener, J.G., Jones, D.T.: Recent developments in deep learning applied to protein structure prediction. Proteins Struct. Funct. Bioinform. 87(12), 1179–1189 (2019)

    Article  Google Scholar 

  6. Pakhrin, S.C., Shrestha, B., Adhikari, B., Kc, D.B.: Deep learning-based advances in protein structure prediction. Int. J. Mol. Sci. 22(11), 5553 (2021)

    Article  Google Scholar 

  7. Baek, M., et al.: Accurate prediction of protein structures and interactions using a three-track neural network. Science 373(6557), 871–876 (2021)

    Article  Google Scholar 

  8. Jaderberg, M., Simonyan, K., Zisserman, A.: Spatial transformer networks. Adv. Neural Inf. Process. Syst. 28 (2015)

    Google Scholar 

  9. Li, N., Liu, S., Liu, Y., Zhao, S., Liu, M.: Neural speech synthesis with transformer network. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 6706–6713 (2019)

    Google Scholar 

  10. Kim, S., Lin, S., Jeon, S.R., Min, D., Sohn, K.: Recurrent transformer networks for semantic correspondence. Adv. Neural Inf. Process. Syst. 31 (2018)

    Google Scholar 

  11. Giuliari, F., Hasan, I., Cristani, M., Galasso, F.: Transformer networks for trajectory forecasting. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 10335–10342. IEEE (2021)

    Google Scholar 

  12. Costa, A., Ponnapati, M., Jacobson, J.M., Chatterjee, P.: Distillation of MSA embeddings to folded protein structures with graph transformers. bioRxiv (2021)

    Google Scholar 

  13. Yang, J., Anishchenko, I., Park, H., Peng, Z., Ovchinnikov, S., Baker, D.: Improved protein structure prediction using predicted interresidue orientations. Proc. Natl. Acad. Sci. 117(3), 1496–1503 (2020)

    Article  Google Scholar 

  14. Adhikari, B.: A fully open-source framework for deep learning protein real-valued distances. Sci. Rep. 10(1), 1–10 (2020)

    Article  Google Scholar 

  15. Doran, C., Gullans, S.R., Lasenby, A., Lasenby, J., Fitzgerald, W.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  16. Dorst, L., Doran, C., Lasenby, J. (eds.): Springer, Heidelberg (2012). https://doi.org/10.1007/978-1-4612-0089-5

    Book  Google Scholar 

  17. Lavor, C., Alves, R.: Oriented conformal geometric algebra and the molecular distance geometry problem. Adv. Appl. Clifford Algebras 29(1), 1–15 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Alves, R., Lavor, C.: Geometric algebra to model uncertainties in the discretizable molecular distance geometry problem. Adv. Appl. Clifford Algebras 27(1), 439–452 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jumper, J., et al.: AlphaFold 2 (2020)

    Google Scholar 

  20. Lasenby, J., Hadfield, H., Lasenby, A.: Calculating the rotor between conformal objects. Adv. Appl. Clifford Algebras 29(5), 1–9 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Eide, E.R.: Master’s degree thesis. University of Cambridge, Camera Calibration using Conformal Geometric Algebra (2018)

    Google Scholar 

  22. Yun, S., Jeong, M., Kim, R., Kang, J., Kim, H.J.: Graph transformer networks. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  23. Hadfield H., Wieser E., Arsenovic A., Kern R.: The Pygae Team. Pygae/Clifford (2020)

    Google Scholar 

  24. Burley, S.K., Berman, H.M., Kleywegt, G.J., Markley, J.L., Nakamura, H., Velankar, S.: Protein Data bank (PDB): the single global macromolecular structure archive. Protein Crystallogr. 627–641 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Pepe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pepe, A., Lasenby, J., Chacón, P. (2023). Using a Graph Transformer Network to Predict 3D Coordinates of Proteins via Geometric Algebra Modelling. In: Hitzer, E., Papagiannakis, G., Vasik, P. (eds) Empowering Novel Geometric Algebra for Graphics and Engineering. ENGAGE 2022. Lecture Notes in Computer Science, vol 13862. Springer, Cham. https://doi.org/10.1007/978-3-031-30923-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30923-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30922-9

  • Online ISBN: 978-3-031-30923-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics