Abstract
In this work, we investigate the BGV scheme as implemented in HElib. We begin by performing an implementation-specific noise analysis of BGV. This allows us to derive much tighter bounds than what was previously done. To confirm this, we compare our bounds against the state of the art. We find that, while our bounds are at most 1.8 bits off the experimentally observed values, they are as much as 29 bits tighter than previous work. Finally, to illustrate the importance of our results, we propose new and optimised parameters for HElib. In HElib, the special modulus is chosen to be k times larger than the current ciphertext modulus \(Q_i\). For a ratio of subsequent ciphertext moduli \(\log (\frac{Q_i}{Q_{i-1}}) = 54\) (a very common choice in HElib), we can optimise k by up to 26 bits. This means that we can either enable more multiplications without having to switch to larger parameters, or reduce the size of the evaluation keys, thus reducing on communication costs in relevant applications. We argue that our results are near-optimal.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akavia, A., Feldman, D., Shaul, H.: Secure search on encrypted data via multi-ring sketch. In: Lie, D., Mannan, M., Backes, M., Wang, X.F. (eds.) ACM CCS 2018, pp. 985–1001. ACM Press (2018)
Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptol. 9(3), 169–203 (2015)
Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_50
Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012, pp. 309–325. ACM (2012)
Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_15
Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_1
Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed homomorphic operations and efficient circuit bootstrapping for TFHE. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. Part I, volume 10624 of LNCS, pp. 377–408. Springer, Heidelberg (2017)
Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomorphic encryption over the torus. J. Cryptol. 33(1), 34–91 (2020)
Chillotti, I., Ligier, D., Orfila, J.-B., Tap, S.: Improved programmable bootstrapping with larger precision and efficient arithmetic circuits for TFHE. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13092, pp. 670–699. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92078-4_23
Cid, C., Indrøy, J.P., Raddum, H.: FASTA – a stream cipher for fast FHE evaluation. In: Galbraith, S.D. (ed.) CT-RSA 2022. LNCS, vol. 13161, pp. 451–483. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-95312-6_19
Costache, A., Smart, N.P.: Which ring based somewhat homomorphic encryption scheme is best? In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 325–340. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29485-8_19
Costache, A., Curtis, B.R., Hales, E., Murphy, S., Ogilvie, T., Player, R.: On the precision loss in approximate homomorphic encryption. Cryptology ePrint Archive, Paper 2022/162 (2022). https://eprint.iacr.org/2022/162
Costache, A., Laine, K., Player, R.: Evaluating the effectiveness of heuristic worst-case noise analysis in FHE. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.) ESORICS 2020. LNCS, vol. 12309, pp. 546–565. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59013-0_27
Costache, A., Nürnberger, L., Player, R.: Optimisations and trade-offs for HElib. Cryptology ePrint Archive, Paper 2023/104 (2023). https://eprint.iacr.org/2023/104
Crawford, J.L.H., Gentry, C., Halevi, S., Platt, D., Shoup, V.: Doing real work with FHE: the case of logistic regression. In: Brenner, M., Rohloff, K. (eds.) Proceedings of the 6th Workshop on Encrypted Computing & Applied Homomorphic Cryptography, WAHC@CCS 2018, Toronto, ON, Canada, 19 October 2018, pp. 1–12. ACM (2018)
Ducas, L., Micciancio, D.: Improved short lattice signatures in the standard model. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 335–352. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_19
Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive, Report 2012/144 (2012). https://eprint.iacr.org/2012/144
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press (2009)
Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 465–482. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_28
Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_49
Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5
Halevi, S., Shoup, V.: Design and implementation of HElib: a homomorphic encryption library. Cryptology ePrint Archive, Report 2020/1481 (2020). https://eprint.iacr.org/2020/1481
Halevi, S., Shoup, V.: Helib 2.2.1. GitHub Repository homenc/HElib (2021)
Iliashenko, I.: Optimisations of Fully Homomorphic Encryption. PhD thesis, KU Leuven (2019)
Kim, A., Polyakov, Y., Zucca, V.: Revisiting homomorphic encryption schemes for finite fields. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13092, pp. 608–639. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92078-4_21
Kolmogorov, A.: Sulla determinazione empirica di una lgge di distribuzione. Inst. Ital. Attuari Giorn. 4, 83–91 (1933)
Lattigo v4. https://github.com/tuneinsight/lattigo. EPFL-LDS, Tune Insight SA (2022)
Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_13
Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1
Murphy, S., Player, R.: A central limit framework for ring-LWE decryption. Cryptology ePrint Archive, Report 2019/452 (2019). https://eprint.iacr.org/2019/452
Palisade lattice cryptography library (release 1.10.6) (2020)
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press (2005)
Microsoft SEAL (release 4.0). https://github.com/Microsoft/SEAL. Microsoft Research, Redmond, WA (2022)
Smirnov, N.: Table for estimating the goodness of fit of empirical distributions. Ann. Math. Stat. 19(2), 279–281 (1948)
Acknowledgements
We would like to thank Leroy Odunlami for insightful discussions on statistics and probability theory.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Costache, A., Nürnberger, L., Player, R. (2023). Optimisations and Tradeoffs for HElib. In: Rosulek, M. (eds) Topics in Cryptology – CT-RSA 2023. CT-RSA 2023. Lecture Notes in Computer Science, vol 13871. Springer, Cham. https://doi.org/10.1007/978-3-031-30872-7_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-30872-7_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-30871-0
Online ISBN: 978-3-031-30872-7
eBook Packages: Computer ScienceComputer Science (R0)