Abstract
In this paper, we propose a rectangle-like method called rotational-XOR differential rectangle attack to search for better distinguishers. It is a combination of the rotational-XOR cryptanalysis and differential cryptanalysis in the rectangle-based way. In particular, we put a rotational-XOR characteristic before a differential characteristic to construct a rectangle structure. By choosing some appropriate rotational-XOR and differential characteristics as well as considering multiple differentials, some longer distinguishers that have the probability greater than \(2^{-2n}\) can be constructed effectively where n is the block size of a block cipher. We apply this new method to some versions of Simon and Simeck block ciphers. As a result, we obtain rotational-XOR differential rectangle distinguishers up to 16, 16, 17, 16 and 21 rounds for Simon32/64, Simon48/72, Simon48/96, Simeck32 and Simeck48, respectively. Our distinguishers for Simon32/64 and Simon48/96 are both longer than the best differential and rotational-XOR distinguishers. Also, our distinguisher for Simeck32 is longer than the best differential distinguisher (14 rounds) and has the full weak key space (i.e., \(2^{64}\)) whereas the 16-round rotational-XOR distinguisher has a weak key class of \(2^{36}\). In addition, our distinguisher for Simeck48 has a better weak key class (\(2^{72}\) weak keys) than the 21-round rotational-XOR distinguisher (\(2^{60}\) weak keys). To the best of our knowledge, this is the first time to consider the combinational cryptanalysis based on rotational-XOR and differential cryptanalysis using the rectangle structure.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ashur, T., Liu, Y.: Rotational cryptanalysis in the presence of constants. IACR Trans. Symmetric Cryptol. 2016(1), 57–70 (2016). https://doi.org/10.13154/tosc.v2016.i1.57-70
Bar-On, A., Dunkelman, O., Keller, N., Weizman, A.: DLCT: a new tool for differential-linear cryptanalysis. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 313–342. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_11
Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK families of lightweight block ciphers. IACR Cryptol. ePrint Arch., p. 404 (2013). http://eprint.iacr.org/2013/404
Biham, E., Anderson, R., Knudsen, L.: Serpent: a new block cipher proposal. In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 222–238. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-69710-1_15
Biham, E., Dunkelman, O., Keller, N.: The rectangle attack—rectangling the Serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–357. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_21
Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3_1
Biryukov, A., Roy, A., Velichkov, V.: Differential analysis of block ciphers SIMON and SPECK. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 546–570. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0_28
Cid, C., Huang, T., Peyrin, T., Sasaki, Yu., Song, L.: Boomerang connectivity table: a new cryptanalysis tool. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 683–714. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_22
Huang, M., Wang, L., Zhang, Y.: Improved automatic search algorithm for differential and linear cryptanalysis on SIMECK and the applications. In: Naccache, D., et al. (eds.) ICICS 2018. LNCS, vol. 11149, pp. 664–681. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01950-1_39
Khovratovich, D., Nikolić, I.: Rotational cryptanalysis of ARX. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 333–346. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13858-4_19
Khovratovich, D., Nikolić, I., Pieprzyk, J., Sokołowski, P., Steinfeld, R.: Rotational cryptanalysis of ARX revisited. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 519–536. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-5_25
Knudsen, L., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45661-9_9
Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher family. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 161–185. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_8
Kölbl, S., Roy, A.: A brief comparison of Simon and Simeck. In: Bogdanov, A. (ed.) LightSec 2016. LNCS, vol. 10098, pp. 69–88. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55714-4_6
Koo, B., Jung, Y., Kim, W.: Rotational-XOR rectangle cryptanalysis on round-reduced SIMON. Secur. Commun. Netw. 2020, 1–12 (2020). https://doi.org/10.1155/2020/5968584
Langford, S.K., Hellman, M.E.: Differential-linear cryptanalysis. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 17–25. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_3
Leurent, G., Pernot, C., Schrottenloher, A.: Clustering effect in Simon and Simeck. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13090, pp. 272–302. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92062-3_10
Liu, M., Lu, X., Lin, D.: Differential-linear cryptanalysis from an algebraic perspective. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp. 247–277. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9_9
Liu, Z., Li, Y., Wang, M.: Optimal differential trails in Simon-like ciphers. IACR Trans. Symmetric Cryptol. 2017(1), 358–379 (2017). https://doi.org/10.13154/tosc.v2017.i1.358-379
Lu, J., Liu, Y., Ashur, T., Sun, B., Li, C.: Rotational-XOR cryptanalysis of Simon-like block ciphers. In: Liu, J.K., Cui, H. (eds.) ACISP 2020. LNCS, vol. 12248, pp. 105–124. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55304-3_6
Lu, J., Liu, Y., Ashur, T., Sun, B., Li, C.: Improved rotational-XOR cryptanalysis of Simon-like block ciphers. IET Inf. Secur. 16(4), 282–300 (2022). https://doi.org/10.1049/ise2.12061
Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_33
Murphy, S.: The return of the cryptographic boomerang. IEEE Trans. Inf. Theory 57(4), 2517–2521 (2011). https://doi.org/10.1109/TIT.2011.2111091
Rohit, R., Gong, G.: Correlated sequence attack on reduced-round Simon-32/64 and Simeck-32/64. IACR Cryptol. ePrint Arch., p. 699 (2018). https://eprint.iacr.org/2018/699
Wagner, D.: The boomerang attack. In: Knudsen, L. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48519-8_12
Wang, X., Wu, B., Hou, L., Lin, D.: Automatic search for related-key differential trails in SIMON-like block ciphers based on MILP. In: Chen, L., Manulis, M., Schneider, S. (eds.) ISC 2018. LNCS, vol. 11060, pp. 116–131. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99136-8_7
Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching integral distinguishers based on division property for 6 lightweight block ciphers. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 648–678. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_24
Yang, G., Zhu, B., Suder, V., Aagaard, M.D., Gong, G.: The Simeck family of lightweight block ciphers. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 307–329. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4_16
Acknowledgement
We would like to thank Maria Eichlseder and all the anonymous reviewers for their valuable comments to improve the quality of this paper. This work was supported by the National Natural Science Foundation of China (No. 62272147), the Science and Technology on Communication Security Laboratory Foundation (No. 6142103012207), the Research Foundation of Department of Education of Hubei Province (No. D2020104) and the Wuhan Science and Technology Bureau (NO. 2022010801020328).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Algorithm to Calculate \(\tilde{q}\) for Simon-Like Ciphers
Algorithm to Calculate \(\tilde{q}\) for Simon-Like Ciphers
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, S., Zhu, M., Xiang, Z., Xu, R., Zeng, X., Zhang, S. (2023). Rotational-XOR Differential Rectangle Cryptanalysis on Simon-Like Ciphers. In: Rosulek, M. (eds) Topics in Cryptology – CT-RSA 2023. CT-RSA 2023. Lecture Notes in Computer Science, vol 13871. Springer, Cham. https://doi.org/10.1007/978-3-031-30872-7_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-30872-7_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-30871-0
Online ISBN: 978-3-031-30872-7
eBook Packages: Computer ScienceComputer Science (R0)