Abstract
Arithmetic to Boolean masking (A2B) conversion is a crucial technique in the masking of lattice-based post-quantum cryptography. It is also a crucial part of building a masked comparison which is one of the hardest to mask building blocks for active secure lattice-based encryption. We first present a new method, called one-hot conversion, to efficiently convert from higher-order arithmetic masking to Boolean masking using a variant of the higher-order table-based conversion of Coron et al. Secondly, we specialize our method to perform arithmetic to 1-bit Boolean functions. Our one-hot function can be applied to masking lattice-based encryption building blocks such as masked comparison or to determine the most significant bit of an arithmetically masked variable. In our benchmarks on a Cortex M4 processor, a speedup of 15 times is achieved over state-of-the-art table-based A2B conversions, bringing table-based A2B conversions within the performance range of the Boolean circuit-based A2B conversions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note that the numbers given in [16] (Table 6) depict algorithmic operation counts and not cycles in an actual implementation. As there is no one-to-one match between the algorithmic operation count and the cycle count (e.g., memory accesses might be more expensive than local operations) one should be careful in comparing these numbers.
References
Alagic, G., et al.: Status Report on the Second Round of the NIST Post-Quantum Cryptography Standardization Process (2020). https://csrc.nist.gov/publications/detail/nistir/8309/final
Amiet, D., Curiger, A., Leuenberger, L., Zbinden, P.: Defeating NewHope with a single trace. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp. 189–205. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1_11
Atici, A.C., Batina, L., Gierlichs, B., Verbauwhede, I.: Power analysis on ntru implementations for RFIDs: First results (2008)
Bache, F., Paglialonga, C., Oder, T., Schneider, T., Güneysu, T.: High-speed masking for polynomial comparison in lattice-based kems. IACR TCHES 2020(3), 483–507 (2020). https://doi.org/10.13154/tches.v2020.i3.483-507, https://tches.iacr.org/index.php/TCHES/article/view/8598
Barthe, G., et al.: Strong non-interference and type-directed higher-order masking. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 116–129. ACM Press (2016). https://doi.org/10.1145/2976749.2978427
Barthe, G., et al.: Masking the GLP lattice-based signature scheme at any order. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 354–384. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_12
Bhasin, S., D’Anvers, J.P., Heinz, D., Pöppelmann, T., Van Beirendonck, M.: Attacking and defending masked polynomial comparison. IACR TCHES 2021(3), 334–359 (2021). https://doi.org/10.46586/tches.v2021.i3.334-359, https://tches.iacr.org/index.php/TCHES/article/view/8977
Bos, J.W., Gourjon, M., Renes, J., Schneider, T., van Vredendaal, C.: Masking kyber: first- and higher-order implementations. IACR TCHES 2021(4), 173–214 (2021). https://doi.org/10.46586/tches.v2021.i4.173-214, https://tches.iacr.org/index.php/TCHES/article/view/9064
Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_26
Coron, J.-S., Großschädl, J., Tibouchi, M., Vadnala, P.K.: Conversion from arithmetic to boolean masking with logarithmic complexity. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 130–149. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-5_7
Coron, J.-S., Großschädl, J., Vadnala, P.K.: Secure conversion between boolean and arithmetic masking of any order. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 188–205. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44709-3_11
Coron, J.S., Gérard, F., Trannoy, M., Zeitoun, R.: High-order masking of ntru. Cryptology ePrint Archive, Paper 2022/1188 (2022). https://eprint.iacr.org/2022/1188, https://eprint.iacr.org/2022/1188
Coron, J.S., Rondepierre, F., Zeitoun, R.: High order masking of look-up tables with common shares. IACR TCHES 2018(1), 40–72 (2018). https://doi.org/10.13154/tches.v2018.i1.40-72, https://tches.iacr.org/index.php/TCHES/article/view/832
Coron, J.-S., Tchulkine, A.: A new algorithm for switching from arithmetic to boolean masking. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 89–97. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45238-6_8
Coron, J.S., Gérard, F., Montoya, S., Zeitoun, R.: High-order polynomial comparison and masking lattice-based encryption. Cryptology ePrint Archive, Report 2021/1615 (2021). https://ia.cr/2021/1615
Coron, J.S., Gérard, F., Montoya, S., Zeitoun, R.: High-order table-based conversion algorithms and masking lattice-based encryption. Cryptology ePrint Archive, Report 2021/1314 (2021). https://ia.cr/2021/1314
D’Anvers, J.P., Heinz, D., Pessl, P., van Beirendonck, M., Verbauwhede, I.: Higher-order masked ciphertext comparison for lattice-based cryptography. Cryptology ePrint Archive, Report 2021/1422 (2021). https://ia.cr/2021/1422
D’Anvers, J.P., Karmakar, A., Roy, S.S., Vercauteren, F.: SABER. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
D’Anvers, J.P., Tiepelt, M., Vercauteren, F., Verbauwhede, I.: Timing attacks on error correcting codes in post-quantum schemes. In: Proceedings of ACM Workshop on Theory of Implementation Security Workshop, TIS 2019, pp. 2–9. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3338467.3358948
D’Anvers, J.P., Van Beirendonck, M., Verbauwhede, I.: Revisiting higher-order masked comparison for lattice-based cryptography: Algorithms and bit-sliced implementations. Cryptology ePrint Archive, Report 2022/110 (2022). https://ia.cr/2022/110
Debraize, B.: Efficient and provably secure methods for switching from arithmetic to boolean masking. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 107–121. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8_7
Fritzmann, T., et al.: Masked accelerators and instruction set extensions for post-quantum cryptography. Cryptology ePrint Archive, Report 2021/479 (2021). https://eprint.iacr.org/2021/479
Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_34
Goubin, L.: A sound method for switching between boolean and arithmetic masking. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 3–15. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1_2
Guo, Q., Johansson, T., Nilsson, A.: A key-recovery timing attack on post-quantum primitives using the fujisaki-okamoto transformation and its application on FrodoKEM. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 359–386. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_13
Heinz, D., Kannwischer, M.J., Land, G., Pöppelmann, T., Schwabe, P., Sprenkels, D.: First-order masked kyber on arm cortex-m4. Cryptology ePrint Archive, Report 2022/058 (2022). https://ia.cr/2022/058
Kundu, S., D’Anvers, J.P., Beirendonck, M.V., Karmakar, A., Verbauwhede, I.: Higher-order masked saber. Cryptology ePrint Archive, Paper 2022/389 (2022). https://eprint.iacr.org/2022/389, https://eprint.iacr.org/2022/389
Lyubashevsky, V., et al.: CRYSTALS-DILITHIUM. Technical report, National Institute of Standards and Technology (2020). https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
Migliore, V., Gérard, B., Tibouchi, M., Fouque, P.-A.: Masking dilithium. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 344–362. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21568-2_17
NIST Computer Security Division: Post-Quantum Cryptography Standardization (2016). https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
Oder, T., Schneider, T., Pöppelmann, T., Güneysu, T.: Practical CCA2-secure masked Ring-LWE implementations. IACR TCHES 2018(1), 142–174 (2018). https://doi.org/10.13154/tches.v2018.i1.142-174, https://tches.iacr.org/index.php/TCHES/article/view/836
Prest, T., et al.: FALCON. Technical report, National Institute of Standards and Technology (2020). https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
Primas, R., Pessl, P., Mangard, S.: Single-trace side-channel attacks on masked lattice-based encryption. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 513–533. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_25
Ravi, P., Roy, S.S., Chattopadhyay, A., Bhasin, S.: Generic side-channel attacks on CCA-secure lattice-based PKE and KEMs. IACR TCHES 2020(3), 307–335 (2020). https://doi.org/10.13154/tches.v2020.i3.307-335, https://tches.iacr.org/index.php/TCHES/article/view/8592
Reparaz, O., Sinha Roy, S., Vercauteren, F., Verbauwhede, I.: A masked ring-LWE implementation. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 683–702. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4_34
Schneider, T., Paglialonga, C., Oder, T., Güneysu, T.: Efficiently masking binomial sampling at arbitrary orders for lattice-based crypto. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 534–564. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6_18
Schwabe, P., et al.: CRYSTALS-KYBER. Technical report, National Institute of Standards and Technology (2020). https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
Silverman, J.H., Whyte, W.: Timing attacks on NTRUEncrypt via variation in the number of hash calls. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 208–224. Springer, Heidelberg (2006). https://doi.org/10.1007/11967668_14
Ueno, R., Xagawa, K., Tanaka, Y., Ito, A., Takahashi, J., Homma, N.: Curse of re-encryption: a generic power/em analysis on post-quantum kems. Cryptology ePrint Archive, Report 2021/849 (2021). https://ia.cr/2021/849
Van Beirendonck, M., D’Anvers, J., Karmakar, A., Balasch, J., Verbauwhede, I.: A side-channel-resistant implementation of SABER. ACM JETC 17(2), 10:1–10:26 (2021)
Van Beirendonck, M., D’Anvers, J.P., Verbauwhede, I.: Analysis and comparison of table-based arithmetic to boolean masking. IACR TCHES 2021(3), 275–297 (2021). https://doi.org/10.46586/tches.v2021.i3.275-297, https://tches.iacr.org/index.php/TCHES/article/view/8975
Wang, A., Zheng, X., Wang, Z.: Power analysis attacks and countermeasures on ntru-based wireless body area networks. KSII Trans. Internet Inf. Syst. (TIIS) 7(5), 1094–1107 (2013)
Xu, Z., Pemberton, O., Roy, S.S., Oswald, D.: Magnifying side-channel leakage of lattice-based cryptosystems with chosen ciphertexts: the case study of kyber. Cryptology ePrint Archive, Report 2020/912 (2020). https://eprint.iacr.org/2020/912
Acknowledgements
I would like to thank Michiel Van Beirendonck for the interesting discussions on this topic. This work was supported in part by CyberSecurity Research Flanders with reference number VR20192203, the Research Council KU Leuven (C16/15/058) and the Horizon 2020 ERC Advanced Grant (101020005 Belfort). Jan-Pieter D’Anvers is funded by FWO (Research Foundation - Flanders) as junior post-doctoral fellow (contract number 133185 / 1238822N LV).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 International Association for Cryptologic Research
About this paper
Cite this paper
D’Anvers, JP. (2023). One-Hot Conversion: Towards Faster Table-Based A2B Conversion. In: Hazay, C., Stam, M. (eds) Advances in Cryptology – EUROCRYPT 2023. EUROCRYPT 2023. Lecture Notes in Computer Science, vol 14007. Springer, Cham. https://doi.org/10.1007/978-3-031-30634-1_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-30634-1_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-30633-4
Online ISBN: 978-3-031-30634-1
eBook Packages: Computer ScienceComputer Science (R0)