Abstract
We present a new block cipher mode of operation for authenticated encryption (AE), dubbed \(\textsf{XOCB}\), that has the following features: (1) beyond-birthday-bound (BBB) security based on the standard pseudorandom assumption of the internal block cipher if the maximum block length is sufficiently smaller than the birthday bound, (2) rate-1 computation, and (3) supporting any block cipher with any key length. Namely, \(\textsf{XOCB}\) has effectively the same efficiency as the seminal \(\textsf{OCB}\) while having stronger quantitative security without any change in the security model or the required primitive in \(\textsf{OCB}\). Although numerous studies have been conducted in the past, our \(\textsf{XOCB}\) is the first mode of operation to achieve these multiple goals simultaneously.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We use the term AE to mean nonce-based AEAD [36] throughout the paper, unless otherwise stated.
- 2.
By convention, we ignore the constant number of block cipher calls per message.
- 3.
- 4.
We may simply write \(\textsf{OCB}\) to mean \(\textsf{OCB3}\).
- 5.
The second version \(\textsf {OCB2}\) is flawed and allows devastating attacks, though a simple fix is possible [20].
- 6.
- 7.
In concurrent to our work, Bhattacharjee, Bhaumik, and Nandi [8] presented an AE scheme combining SPRP and PRF that has some structural similarity to \(\textsf{XOCB}\).
- 8.
More precisely, the block length of an encryption (resp. decryption) query is defined as \(|A|_n+|M|_n\) (resp. \(|A|_n+|C|_n\)), while the length of the “empty” query is 1.
- 9.
A trail is a walk in which all edges are distinct.
- 10.
The source codes can be found via https://www.dropbox.com/sh/k0y8h1boah072mn/AAAYPUr0j4MU9F3-w1k7U52Ha?dl=0.
References
Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC. NIST Special Publication 800–38D (2007), National Institute of Standards and Technology
Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How to securely release unverified plaintext in authenticated encryption. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 105–125. Springer, Heidelberg (Dec 2014). https://doi.org/10.1007/978-3-662-45611-8_6
Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita, T., Regazzoni, F.: Midori: A block cipher for low energy. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part II. LNCS, vol. 9453, pp. 411–436. Springer, Heidelberg (Nov / Dec 2015). https://doi.org/10.1007/978-3-662-48800-3_17
Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: A small present - towards reaching the limit of lightweight encryption. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 321–345. Springer, Heidelberg (Sep 2017). https://doi.org/10.1007/978-3-319-66787-4_16
Beierle, C., Biryukov, A., dos Santos, L.C., Großschädl, J., Perrin, L., Udovenko, A., Velichkov, V., Wang, Q.: Alzette: A 64-bit ARX-box - (feat. CRAX and TRAX). In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 419–448. Springer, Heidelberg (Aug 2020). https://doi.org/10.1007/978-3-030-56877-1_15
Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (Dec 2000). https://doi.org/10.1007/3-540-44448-3_41
Bhargavan, K., Leurent, G.: On the practical (in-)security of 64-bit block ciphers: Collision attacks on HTTP over TLS and OpenVPN. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016. pp. 456–467. ACM Press (Oct 2016). https://doi.org/10.1145/2976749.2978423
Bhattacharjee, A., Bhaumik, R., Nandi, M.: Offset-based bbb-secure tweakable block-ciphers with updatable caches. In: INDOCRYPT. Lecture Notes in Computer Science, vol. 13774, pp. 171–194. Springer (2022)
Bhaumik, R., Nandi, M.: Improved security for OCB3. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II. LNCS, vol. 10625, pp. 638–666. Springer, Heidelberg (Dec 2017). https://doi.org/10.1007/978-3-319-70697-9_22
Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (Sep 2007). https://doi.org/10.1007/978-3-540-74735-2_31
Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knežević, M., Knudsen, L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen, S.S., Yalçin, T.: PRINCE - A low-latency block cipher for pervasive computing applications - extended abstract. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 208–225. Springer, Heidelberg (Dec 2012). https://doi.org/10.1007/978-3-642-34961-4_14
Choi, W., Lee, B., Lee, Y., Lee, J.: Improved Security Analysis for Nonce-Based Enhanced Hash-then-Mask MACs. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 697–723. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_23
Cogliati, B., Dutta, A., Nandi, M., Patarin, J., Saha, A.: Proof of Mirror Theory for any xi_max. Cryptology ePrint Archive, Paper 2022/686 (2022), https://eprint.iacr.org/2022/686, https://eprint.iacr.org/2022/686
Cogliati, B., Patarin, J.: Mirror theory: A simple proof of the pi+pj theorem with xi_max=2. Cryptology ePrint Archive, Paper 2020/734 (2020), https://eprint.iacr.org/2020/734, https://eprint.iacr.org/2020/734
Datta, N., Dutta, A., Nandi, M., Paul, G.: Double-block hash-then-sum: A paradigm for constructing BBB secure PRF. IACR Trans. Symm. Cryptol. 2018(3), 36–92 (2018). 10.13154/tosc.v2018.i3.36-92
Datta, N., Dutta, A., Nandi, M., Yasuda, K.: Encrypt or Decrypt? To Make a Single-Key Beyond Birthday Secure Nonce-Based MAC. In: Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology - CRYPTO 2018 (Proceedings, Part I). LNCS, vol. 10991, pp. 631–661. Springer (2018). https://doi.org/10.1007/978-3-319-96884-1_21
Dutta, A., Nandi, M., Saha, A.: Proof of mirror theory for xi_max=2. IEEE Transactions on Information Theory 68(9), 6218–6232 (2022). https://doi.org/10.1109/TIT.2022.3171178
Dutta, A., Nandi, M., Talnikar, S.: Beyond Birthday Bound Secure MAC in Faulty Nonce Model. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology - EUROCRYPT 2019 (Proceedings, Part I). LNCS, vol. 11476, pp. 437–466. Springer (2019). https://doi.org/10.1007/978-3-030-17653-2_15
Hoang, V.T., Tessaro, S.: Key-Alternating Ciphers and Key-Length Extension: Exact Bounds and Multi-user Security. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology - CRYPTO 2016 (Proceedings, Part I). LNCS, vol. 9814, pp. 3–32. Springer (2016). https://doi.org/10.1007/978-3-662-53018-4_1
Inoue, A., Iwata, T., Minematsu, K., Poettering, B.: Cryptanalysis of OCB2: Attacks on authenticity and confidentiality. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 3–31. Springer, Heidelberg (Aug 2019). https://doi.org/10.1007/978-3-030-26948-7_1
Iwata, T.: New blockcipher modes of operation with beyond the birthday bound security. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 310–327. Springer, Heidelberg (Mar 2006). https://doi.org/10.1007/11799313_20
Iwata, T.: Authenticated Encryption Mode for Beyond the Birthday Bound Security. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 125–142. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68164-9_9
Iwata, T., Ohashi, K., Minematsu, K.: Breaking and repairing GCM security proofs. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 31–49. Springer, Heidelberg (Aug 2012). https://doi.org/10.1007/978-3-642-32009-5_3
Jha, A., List, E., Minematsu, K., Mishra, S., Nandi, M.: XHX - A framework for optimally secure tweakable block ciphers from classical block ciphers and universal hashing. In: Lange, T., Dunkelman, O. (eds.) LATINCRYPT 2017. LNCS, vol. 11368, pp. 207–227. Springer, Heidelberg (Sep 2017). https://doi.org/10.1007/978-3-030-25283-0_12
Katz, J., Yung, M.: Unforgeable encryption and chosen ciphertext secure modes of operation. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 284–299. Springer, Heidelberg (Apr 2001). https://doi.org/10.1007/3-540-44706-7_20
Kim, S., Lee, B., Lee, J.: Tight security bounds for double-block hash-then-sum MACs. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 435–465. Springer, Heidelberg (May 2020). https://doi.org/10.1007/978-3-030-45721-1_16
Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer, Heidelberg (Feb 2011). https://doi.org/10.1007/978-3-642-21702-9_18
Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. Journal of Cryptology 24(3), 588–613 (2011). https://doi.org/10.1007/s00145-010-9073-y
Mennink, B.: Optimally secure tweakable blockciphers. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 428–448. Springer, Heidelberg (Mar 2015). https://doi.org/10.1007/978-3-662-48116-5_21
Mennink, B.: Insuperability of the standard versus ideal model gap for tweakable blockcipher security. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 708–732. Springer, Heidelberg (Aug 2017). https://doi.org/10.1007/978-3-319-63715-0_24
Naito, Y.: Improved XKX-based AEAD scheme: Removing the birthday terms. In: Lange, T., Dunkelman, O. (eds.) LATINCRYPT 2017. LNCS, vol. 11368, pp. 228–246. Springer, Heidelberg (Sep 2017). https://doi.org/10.1007/978-3-030-25283-0_13
Naito, Y.: Tweakable blockciphers for efficient authenticated encryptions with beyond the birthday-bound security. IACR Trans. Symm. Cryptol. 2017(2), 1–26 (2017). 10.13154/tosc.v2017.i2.1-26
Niwa, Y., Ohashi, K., Minematsu, K., Iwata, T.: GCM security bounds reconsidered. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 385–407. Springer, Heidelberg (Mar 2015). https://doi.org/10.1007/978-3-662-48116-5_19
Patarin, J.: Introduction to Mirror Theory: Analysis of Systems of Linear Equalities and Linear Non Equalities for Cryptography. IACR Cryptology ePrint Archive, Report 2010/287 (2010), available at https://eprint.iacr.org/2010/287
Patarin, J.: Mirror Theory and Cryptography. IACR Cryptology ePrint Archive, Report 2016/702 (2016), available at https://eprint.iacr.org/2016/702
Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.) ACM CCS 2002. pp. 98–107. ACM Press (Nov 2002). https://doi.org/10.1145/586110.586125
Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 16–31. Springer, Heidelberg (Dec 2004). https://doi.org/10.1007/978-3-540-30539-2_2
Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: A block-cipher mode of operation for efficient authenticated encryption. In: Reiter, M.K., Samarati, P. (eds.) ACM CCS 2001. pp. 196–205. ACM Press (Nov 2001). https://doi.org/10.1145/501983.502011
Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390. Springer, Heidelberg (May / Jun 2006). https://doi.org/10.1007/11761679_23
Sovyn, Y., Khoma, V., Podpora, M.: Comparison of Three CPU-Core Families for IoT Applications in Terms of Security and Performance of AES-GCM. IEEE Internet of Things Journal 7(1), 339–348 (2020). https://doi.org/10.1109/JIOT.2019.2953230
Acknowledgement
We thank the anonymous reviewers for their insightful comments that improved the presentation of our paper. Jooyoung Lee was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.2021R1F1A1047146). Zhenzhen Bao was supported by the National Key R &D Program of China (Grant No. 2018YFA0704701), the Major Program of Guangdong Basic and Applied Research (Grant No. 2019B030302008), and the Shandong Province Key R &D Project (Nos. 2020ZLYS09 and 2019JZZY010133).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 International Association for Cryptologic Research
About this paper
Cite this paper
Bao, Z., Hwang, S., Inoue, A., Lee, B., Lee, J., Minematsu, K. (2023). XOCB: Beyond-Birthday-Bound Secure Authenticated Encryption Mode with Rate-One Computation. In: Hazay, C., Stam, M. (eds) Advances in Cryptology – EUROCRYPT 2023. EUROCRYPT 2023. Lecture Notes in Computer Science, vol 14007. Springer, Cham. https://doi.org/10.1007/978-3-031-30634-1_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-30634-1_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-30633-4
Online ISBN: 978-3-031-30634-1
eBook Packages: Computer ScienceComputer Science (R0)