Abstract
In this paper we, for the first time, study the question under which circumstances decomposing a round function of a Substitution-Permutation Network is possible uniquely. More precisely, we provide necessary and sufficient criteria for the non-linear layer on when a decomposition is unique. Our results in particular imply that, when cryptographically strong S-boxes are used, the decomposition is indeed unique. We then apply our findings to the notion of alignment, pointing out that the previous definition allows for primitives that are both aligned and unaligned simultaneously.
As a second result, we present experimental data that shows that alignment might only have limited impact. For this, we compare aligned and unaligned versions of the cipher PRESENT.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Thankfully, for the case of counting S-boxes those requirements lead to trivial bounds for the probability/absolute correlation of a differential/linear trail, no matter the decomposition.
- 3.
The arguments are mainly based on the rational canonical form of the linear layer and this form might change when using linear equivalent S-boxes and modifying the linear layer accordingly.
- 4.
In other words, the direct sum enables us to express every element \(x \in W\) as \(\sum _i x_i\) for unique \(x_i \in U_i\). Hence, \(\pi _j^U\) is the mapping defined by \(x = \sum _i x_i \mapsto x_j\).
- 5.
More precisely, we allow the subspaces to be equal to \(\mathbb {F}_2^{n}\) but not to be \(\{0\}\).
- 6.
This version is equivalent to the one from [8] since \(T(U_i) = U_{\tau (i)}\) means that T is the composition of a \(\Pi _N\)-Shuffle and a \(\Pi _N\) aligned linear function. As the composition of a \(\Pi _{N'}\) aligned and a \(\Pi _N\) aligned function is obviously \(\Pi _{N'}\) aligned if \(\Pi _N \le \Pi _{N'}\), it is then enough to check that M is \(\Pi _{N'}\) aligned, with \(\Pi _{N'}\) being non-trivial. Since it is only important that \(\Pi _{N'}\) is non-trivial, this can be done by checking if \(M\left( \bigoplus _{i \in J} U_i\right) = \bigoplus _{i \in J} U_i\) and \(M\left( \bigoplus _{i \notin J} U_i\right) = \bigoplus _{i \notin J} U_i\) for some \(J \subset \{1,\dots ,m\}\), i. e. checking for all possible \(\Pi _{N'}\) with two boxes.
- 7.
The code we used to make these experiments is available at: https://doi.org/10.5281/zenodo.7660387.
- 8.
Note that in the case of trivial intersections, we have that \(\pi _i^U \circ \pi _j^W \circ \pi _{l \ne i}^U = \pi _j^W \circ \pi _i^U \circ \pi _{l \ne i}^U = 0\), which means that \(F \circ \pi _i^U \circ \pi _j^W \circ \pi _{l \ne i}^U + F(0) = 0\).
References
Aldaya, A.C., García, C.P., Brumley, B.B.: From A to Z: projective coordinates leakage in the wild. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(3), 428–453 (2020)
Baksi, A., et al.: DEFAULT: cipher level resistance against differential fault attack. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13091, pp. 124–156. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92075-3_5
Beierle, C., Canteaut, A., Leander, G., Rotella, Y.: Proving resistance against invariant attacks: how to choose the round constants. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 647–678. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_22
Beierle, C., Leander, G., Moradi, A., Rasoolzadeh, S.: CRAFT: lightweight tweakable block cipher with efficient protection against DFA attacks. IACR Trans. Symmetric Cryptol. 2019(1), 5–45 (2019)
Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On alignment in Keccak. In: ECRYPT II Hash Workshop, vol. 51, pp. 122 (2011)
Biryukov, A., Shamir, A.: Structural cryptanalysis of SASAS. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 395–405. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_24
Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_31
Bordes, N., Daemen, J., Kuijsters, D., Van Assche, G.: Thinking outside the superbox. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp. 337–367. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9_12
Canteaut, A., et al.: Saturnin: a suite of lightweight symmetric algorithms for post-quantum security. IACR Trans. Symmetric Cryptol. 2020(S1), 160–207 (2020)
Carlet, C.: Boolean Functions for Cryptography and Coding Theory. Cambridge University Press, Cambridge (2021)
Daemen, J., Massolino, P.M.C., Mehrdad, A., Rotella, Y.: The subterranean 2.0 cipher suite. IACR Trans. Symmetric Cryptol. 2020(S1), 262–294 (2020)
Daemen, J., Rijmen, V.: Plateau characteristics. IET Inf. Secur. 1(1), 11–17 (2007)
Eichlseder, M., Kales, D.: Clustering related-tweak characteristics: application to MANTIS-6. IACR Trans. Symmetric Cryptol. 2018(2), 111–132 (2018)
Flórez-Gutiérrez, A., Naya-Plasencia, M.: Improving key-recovery in linear attacks: application to 28-round PRESENT. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 221–249. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_9
Hall-Andersen, M., Vejre, P.S.: Generating graphs packed with paths estimation of linear approximations and differentials. IACR Trans. Symmetric Cryptol. 2018(3), 265–289 (2018)
Kündgen, A., Leander, G., Thomassen, C.: Switchings, extensions, and reductions in central digraphs. J. Comb. Theory Ser. A 118(7), 2025–2034 (2011)
Lambin, B., Leander, G., Neumann, P.: Pitfalls and shortcomings for decompositions and alignment (full version). Cryptology ePrint Archive, Paper 2023/240 (2023). https://eprint.iacr.org/2023/240
Leander, G.: On linear hulls, statistical saturation attacks, PRESENT and a cryptanalysis of PUFFIN. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 303–322. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_18
Leander, G., Rasoolzadeh, S.: Two sides of the same coin: weak-keys and more efficient variants of CRAFT. IACR Cryptology ePrint Archive, p. 238 (2021)
Liu, G., Qiu, W., Yi, T.: New techniques for searching differential trails in Keccak. IACR Trans. Symmetric Cryptol. 2019(4), 407–437 (2020)
McCreesh, C., Prosser, P., Trimble, J.: The Glasgow subgraph solver: using constraint programming to tackle hard subgraph isomorphism problem variants. In: Gadducci, F., Kehrer, T. (eds.) ICGT 2020. LNCS, vol. 12150, pp. 316–324. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51372-6_19
Minaud, B., Derbez, P., Fouque, P.-A., Karpman, P.: Key-recovery attacks on ASASA. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 3–27. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3_1
Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_6
Reis, T.B.S., Aranha, D.F., López, J.: PRESENT runs fast. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 644–664. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_31
Shannon, C.E.: A mathematical theory of cryptography. Mathematical Theory of Cryptography (1945)
Song, L., Huang, Z., Yang, Q.: Automatic differential analysis of ARX block ciphers with application to SPECK and LEA. In: Liu, J.K., Steinfeld, R. (eds.) ACISP 2016, Part II. LNCS, vol. 9723, pp. 379–394. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40367-0_24
Acknowledgment
This work was funded by the by the project Analysis and Protection of Lightweight Cryptographic Algorithms (432878529) and by DFG (German Research Foudation), under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 International Association for Cryptologic Research
About this paper
Cite this paper
Lambin, B., Leander, G., Neumann, P. (2023). Pitfalls and Shortcomings for Decompositions and Alignment. In: Hazay, C., Stam, M. (eds) Advances in Cryptology – EUROCRYPT 2023. EUROCRYPT 2023. Lecture Notes in Computer Science, vol 14007. Springer, Cham. https://doi.org/10.1007/978-3-031-30634-1_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-30634-1_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-30633-4
Online ISBN: 978-3-031-30634-1
eBook Packages: Computer ScienceComputer Science (R0)