Comparison of Block Preconditioners for the Stokes Problem with Discontinuous Viscosity and Friction | SpringerLink
Skip to main content

Comparison of Block Preconditioners for the Stokes Problem with Discontinuous Viscosity and Friction

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13827))

  • 539 Accesses

Abstract

Several block preconditioning strategies for the Stokes problem with piecewise discontinuous viscosity and friction are investigated for their efficiency and independence of the contrast in both viscosity and friction. The constituting blocks correspond to inexact solvers, based on algebraic multigrid. It follows that the block triangular preconditioner is the most robust choice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    When \(cd=0\), both types of preconditioners require only one solve with \(A_0\) and one with \(S_0\).

References

  1. Alnæs, M.S.: The FEniCS project version 1.5. Arch. Numer. Softw. 3(100) (2015)

    Google Scholar 

  2. Balay, S., et al.: PETSc users manual. Technical Report ANL-95/11 - Revision 3.8, Argonne National Laboratory (1995)

    Google Scholar 

  3. Dryja, M., Sarkis, M.: Additive average Schwarz methods for discretization of elliptic problems with highly discontinuous coefficients. Comput. Methods Appl. Math. 10(2), 164–176 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Elman, H.C.: Preconditioning for the steady-state navier-stokes equations with low viscosity. SIAM J. Sci. Comput. 20(4), 1299–1316 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Robert D. Falgout, Jim E. Jones, and Ulrike Meier Yang. The design and implementation of hypre, a library of parallel high performance preconditioners. In Numerical solution of Partial Differential Equations on Parallel Computers, Lect. Notes Comput. Sci. Eng, pages 267–294. Springer-Verlag, 2006

    Google Scholar 

  6. Girault, V., Raviart, P.A.: Finite Element Method for Navier-Stokes Equations. Theory and Algorithms. Springer, Berlin (1986)

    Google Scholar 

  7. Kadoch, B., Kolomenskiy, D., Angot, P., Schneider, K.: A volume penalization method for incompressible flows and scalar advection-diffusion with moving obstacles. J. Comput. Phys. 231(12), 4365–4383 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Krzyżanowski, P.: Block preconditioners for saddle point problems resulting from discretizations of partial differential equations. In: Axelsson, O., Karatson, J., (eds.), Efficient Preconditioned Solution Methods for Elliptic Partial Differential Equations, pp. 44–65. Bentham Publishers (2011)

    Google Scholar 

  9. Malikova, S.: Approximation of rigid obstacle by highly viscous fluid (2022). arxiv:2201.10299

  10. Olshanskii, M.A., Reusken, A.: A Stokes interface problem: stability, finite element analysis and a robust solver. In: European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2004 (2004)

    Google Scholar 

  11. Rudi, J., Stadler, G., Ghattas, O.: Weighted BFBT preconditioner for Stokes flow problems with highly heterogeneous viscosity. SIAM J. Sci. Comput. 39(5), S272–S297 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Schäfer, M., Turek, S., Durst, F., Krause, E., Rannacher, R.: Benchmark computations of laminar flow around a cylinder. In: Hirschel, E.H. (ed.) Flow Simulation with High-Performance Computers II: DFG Priority Research Programme Results 1993–1995, pp. 547–566. Vieweg+Teubner Verlag, Wiesbaden (1996). https://doi.org/10.1007/978-3-322-89849-4_39

    Chapter  Google Scholar 

  13. Wichrowski, M.: Fluid-structure interaction problems: velocity-based formulation and monolithic computational methods. PhD thesis, Polish Academy of Sciences, Institute of Fundamental Technological Research (2021)

    Google Scholar 

  14. Jinchao, X., Zikatanov, L.: Algebraic multigrid methods. Acta Numerica 26, 591–721 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zulehner, W.: A class of smoothers for saddle point problems. Computing 65(3), 227–246 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The author wishes to thank the reviewers whose comments and remarks helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Krzyżanowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krzyżanowski, P. (2023). Comparison of Block Preconditioners for the Stokes Problem with Discontinuous Viscosity and Friction. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2022. Lecture Notes in Computer Science, vol 13827. Springer, Cham. https://doi.org/10.1007/978-3-031-30445-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30445-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30444-6

  • Online ISBN: 978-3-031-30445-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics