Abstract
Concept drift, i.e., the change of the data generating distribution, can render machine learning models inaccurate. Many technologies for learning with drift rely on the interleaved test-train error (ITTE) as a quantity to evaluate model performance and trigger drift detection and model updates. Online learning theory mainly focuses on providing generalization bounds for future loss. Usually, these bounds are too loose to be of practical use. Improving them further is not easily possible as they are tight in many cases. In this work, a new theoretical framework focusing on more practical questions is presented: change of training result, optimal models, and ITTE in the presence (and type) of drift. We support our theoretical findings with empirical evidence for several learning algorithms, models, and datasets.
We gratefully acknowledge funding by the BMBF TiM, grant number 05M20PBA.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, R., Imielinski, T., Swami, A.N.: Database mining: a performance perspective. IEEE Trans. Knowl. Data Eng. 5, 914–925 (1993)
Asuncion, A., Newman, D.: UCI machine learning repository (2007)
Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79, 151–175 (2010)
Blackard, J.A., Dean, D.J., Anderson, C.W.: Covertype data set (1998). http://archive.ics.uci.edu/ml/datasets/Covertype
Ditzler, G., Roveri, M., Alippi, C., Polikar, R.: Learning in nonstationary environments: a survey. IEEE Comp. Int. Mag. 10(4), 12–25 (2015)
Elwell, R., Polikar, R.: Incremental learning of concept drift in nonstationary environments. IEEE Trans. Neural Netw. 22(10), 1517–1531 (2011)
Gama, J.a., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. 46(4), 44:1–44:37 (2014)
Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28645-5_29
Gretton, A., Smola, A., Huang, J., Schmittfull, M., Borgwardt, K., Schölkopf, B.: Covariate Shift and Local Learning by Distribution Matching, pp. 131–160. MIT Press, Cambridge, MA, USA (2009)
Hanneke, S.: A bound on the label complexity of agnostic active learning. In: Proceedings of the 24th ICML, pp. 353–360 (2007)
Hanneke, S., Kanade, V., Yang, L.: Learning with a drifting target concept. In: Chaudhuri, K., Gentile, C., Zilles, S. (eds.) ALT 2015. LNCS (LNAI), vol. 9355, pp. 149–164. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24486-0_10
Hanneke, S., Yang, L.: Statistical learning under nonstationary mixing processes. In: The 22nd International Conference on Artificial Intelligence and Statistics, pp. 1678–1686. PMLR (2019)
Harries, M., cse tr, U.N., Wales, N.S.: Splice-2 comparative evaluation: Electricity pricing. Technical report (1999)
Hinder, F., Artelt, A., Hammer, B.: Towards non-parametric drift detection via dynamic adapting window independence drift detection (dawidd). In: ICML (2020)
Hinder, F., Artelt, A., Hammer, B.: A probability theoretic approach to drifting data in continuous time domains. arXiv preprint arXiv:1912.01969 (2019)
Hinder, F., Vaquet, V., Brinkrolf, J., Hammer, B.: On the change of decision boundaries and loss in learning with concept drift. arXiv preprint arXiv:2212.01223 (2022)
Hinder, F., Vaquet, V., Hammer, B.: Suitability of different metric choices for concept drift detection. In: Bouadi, T., Fromont, E., Hüllermeier, E. (eds.) IDA 2022. LNCS, vol. 13205, pp. 157–170. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-01333-1_13
Losing, V., Hammer, B., Wersing, H.: Incremental on-line learning: a review and comparison of state of the art algorithms. Neurocomputing 275, 1261–1274 (2018)
Mohri, M., Muñoz Medina, A.: New analysis and algorithm for learning with drifting distributions. In: Bshouty, N.H., Stoltz, G., Vayatis, N., Zeugmann, T. (eds.) ALT 2012. LNCS (LNAI), vol. 7568, pp. 124–138. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34106-9_13
Montiel, J., Read, J., Bifet, A., Abdessalem, T.: Scikit-multiflow: a multi-output streaming framework. J. Mach. Learn. Res. 19(72), 1–5 (2018)
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Rakhlin, A., Sridharan, K., Tewari, A.: Online learning via sequential complexities. J. Mach. Learn. Res. 16(1), 155–186 (2015)
Redko, I., Morvant, E., Habrard, A., Sebban, M., Bennani, Y.: A survey on domain adaptation theory: learning bounds and theoretical guarantees. arXiv preprint arXiv:2004.11829 (2020)
Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, Cambridge (2014)
Street, W.N., Kim, Y.: A streaming ensemble algorithm (SEA) for large-scale classification. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 26–29 August 2001, pp. 377–382 (2001)
Yang, L.: Active learning with a drifting distribution. In: Advances in Neural Information Processing Systems, vol. 24 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hinder, F., Vaquet, V., Brinkrolf, J., Hammer, B. (2023). On the Change of Decision Boundary and Loss in Learning with Concept Drift. In: Crémilleux, B., Hess, S., Nijssen, S. (eds) Advances in Intelligent Data Analysis XXI. IDA 2023. Lecture Notes in Computer Science, vol 13876. Springer, Cham. https://doi.org/10.1007/978-3-031-30047-9_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-30047-9_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-30046-2
Online ISBN: 978-3-031-30047-9
eBook Packages: Computer ScienceComputer Science (R0)