Analysis of (U,U+V)-code Problem with Gramian over Binary and Ternary Fields | SpringerLink
Skip to main content

Analysis of (U,U+V)-code Problem with Gramian over Binary and Ternary Fields

  • Conference paper
  • First Online:
Information Security and Cryptology – ICISC 2022 (ICISC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13849))

Included in the following conference series:

  • 6702 Accesses

Abstract

Debris-Alazard, Sendrier, and Tillich proposed SURF, which is a code-based signature scheme and enjoys efficient signature generation and verification (eprint in 2017). The security of this scheme is based on two problems: one is DOOM (Decoding One Out of Many), and the other is the plain (U,U+V)-code problem over \(\mathbb {F}_2\). There are many studies on the former one but few studies on the latter one. Later the security of SURF was broken because the hardness of the plain (U,U+V)-code problem does not hold with considering a notion of the hull.

Then Debris-Alazard et al. proposed Wave as a successor of SURF, which is known as one of the most promising quantum-resistant signature schemes (ASIACRYPT 2019). Wave is based on similar problems used in SURF. Wave uses DOOM and the normalized generalized (U,U+V)-code problem over \(\mathbb {F}_3\).

In this paper, we utilize a notion of the Gramian (the determinant of the Gram matrices) of public keys and analyze the plain (U,U+V)-code problem over \(\mathbb {F}_2\). For this purpose, we compute the asymptotic probability distribution of Gramians of random matrices. Furthermore, we also show a way to analyze the normalized generalized (U,U+V)-code problem over \(\mathbb {F}_2\). Finally, we apply our analysis to the normalized generalized (U,U+V)-code problem over \(\mathbb {F}_3\). By our analysis with Gramian, SURF is completely broken, however, Wave is not directly threatened.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aragon, N., Blazy, O., Gaborit, P., Hauteville, A., Zémor, G.: Durandal: A Rank Metric Based Signature Scheme. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 728–758. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_25

    Chapter  Google Scholar 

  2. Bricout, Rémi., Chailloux, André, Debris-Alazard, Thomas, Lequesne, Matthieu: Ternary Syndrome Decoding with Large Weight. In: Paterson, Kenneth G.., Stebila, Douglas (eds.) SAC 2019. LNCS, vol. 11959, pp. 437–466. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38471-5_18

    Chapter  Google Scholar 

  3. Courtois, N.T., Finiasz, M., Sendrier, N.: How to Achieve a McEliece-Based Digital Signature Scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 157–174. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_10

    Chapter  Google Scholar 

  4. Debris-Alazard, T., Sendrier, N., Tillich, J.: A new signature scheme based on (u|u+v) codes. Cryptology ePrint Archive, Paper 2017/662 (2017). https://eprint.iacr.org/2017/662

  5. Debris-Alazard, T., Sendrier, N., Tillich, J.: The problem with the surf scheme. https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions (2017). https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

  6. Debris-Alazard, T., Sendrier, N., Tillich, J.-P.: Wave: A New Family of Trapdoor One-Way Preimage Sampleable Functions Based on Codes. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 21–51. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_2

    Chapter  Google Scholar 

  7. Fukushima, K., Roy, P.S., Xu, R., Kiyomoto, S., Morozov, K., Takagi, T.: Racoss. first round submission to the NIST post-quantum cryptography call (2017). https://eprint.iacr.org/2017/662

  8. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Dwork, C. (ed.) In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, pp. 197–206. ACM (2008)

    Google Scholar 

  9. Guenda, K., Jitman, S., Gulliver, T.A.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. 86(1), 121–136 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kabatianskii, G.., Krouk, E.., Smeets, B..: A digital signature scheme based on random error-correcting codes. In: Darnell, Michael (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp. 161–167. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024461

    Chapter  Google Scholar 

  11. Lyubashevsky, V.: Fiat-Shamir with Aborts: Applications to Lattice and Factoring-Based Signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_35

    Chapter  Google Scholar 

  12. MacWilliams, J.: Orthogonal matrices over finite fields. The American Mathematical Monthly 76(2), 152–164 (1969). http://www.jstor.org/stable/2317262

  13. Otmani, Ayoub, Tillich, Jean-Pierre.: An Efficient Attack on All Concrete KKS Proposals. In: Yang, Bo-Yin. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 98–116. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_7

    Chapter  Google Scholar 

  14. Sendrier, Nicolas: Decoding One Out of Many. In: Yang, Bo-Yin. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 51–67. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_4

    Chapter  Google Scholar 

  15. Wagner, D.: A Generalized Birthday Problem. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_19

    Chapter  Google Scholar 

Download references

Acknowledgements

A part of this work was supported by JST CREST JP-MJCR2113 and JSPS KAKENHI JP21H04879.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Iwata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Iwata, I., Yoshida, Y., Tanaka, K. (2023). Analysis of (U,U+V)-code Problem with Gramian over Binary and Ternary Fields. In: Seo, SH., Seo, H. (eds) Information Security and Cryptology – ICISC 2022. ICISC 2022. Lecture Notes in Computer Science, vol 13849. Springer, Cham. https://doi.org/10.1007/978-3-031-29371-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29371-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29370-2

  • Online ISBN: 978-3-031-29371-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics