Tracing Lexical Semantic Change with Distributional Semantics: Change and Stability | SpringerLink
Skip to main content

Tracing Lexical Semantic Change with Distributional Semantics: Change and Stability

  • Conference paper
  • First Online:
Chinese Lexical Semantics (CLSW 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13495))

Included in the following conference series:

  • 575 Accesses

Abstract

Recent studies suggest an increasing interest in detecting lexical semantic changes in the context of distributional semantics. However, most proposals have been implemented with English datasets but not much with Chinese data. This paper thus presents an exploratory study using the popular Skip-gram models and post-processing operations to obtain historical word embeddings, testing whether methods in fashion could capture lexical semantic change in Chinese historical texts. Our results demonstrate a positive answer to this question by suggesting interesting cases which may have undergone the process of meaning generalization and shown competence among homographs. Additionally, our analysis also indicates that social contexts play an important role in lexical semantic change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Thulac, THU lexical analyzer for Chinese. More information could be accessed via https://github.com/thunlp/THULAC-Python.

  2. 2.

    Nouns referring to institutions and places, numbers, quantifiers, and exclamation words are removed as stop words.

  3. 3.

    Considering the scale of raw data and the loss of word pairs in each subcorpus, as well as the relation between ‘cosine similarity’ and ‘true similarity’, we assume the correlation score here is reasonable.

References

  1. Bloomfield, L.: Language. Rinehart & Winston, Holt, New York (1933)

    Google Scholar 

  2. Ullmann, S.: The Principles of Semantics. Glasgow University Publications, Edinburgh

    Google Scholar 

  3. Brèal, M., Cust, N., Postgate, J.P.: Semantics: Studies in the Science of Meaning

    Google Scholar 

  4. Geeraerts, D.: Diachronic Prototype Semantics: A Contribution to Historical Lexicology. Oxford Studies in Lexicography, Oxford (1997)

    Google Scholar 

  5. De Saussure, F.: Course in General Linguistics. Columbia University Press, Columbia (2011)

    Google Scholar 

  6. Traugott, E.C., Dasher, R.B.: Regularity in Semantic Change. Cambridge Studies in Linguistics, Cambridge (2002)

    Google Scholar 

  7. Zhao, Q., Huang, C.-R., Long, Y.: Synaesthesia in Chinese: a corpus-based study on gustatory adjectives in mandarin. Linguistics 56(5), 1167–1194 (2018)

    Article  Google Scholar 

  8. Michel, J., et al.: Quantitative analysis of culture using millions of digitized books. Science 331(6014), 176–182 (2011)

    Google Scholar 

  9. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space (2013)

    Google Scholar 

  10. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Pre-training of deep bidirectional transformers for language understanding, Bert (2019)

    Google Scholar 

  11. Tahmasebi, N., Borin, L., Jatowt, A.: Survey of computational approaches to lexical semantic change (2019)

    Google Scholar 

  12. Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey (2018)

    Google Scholar 

  13. Schlechtweg, D., McGillivray, B., Hengchen, S., Dubossarsky, H., Tahmasebi, N.: SemEval-2020 task 1: unsupervised lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, Barcelona, December 2020. International Committee for Computational Linguistics (2020)

    Google Scholar 

  14. Sagi, E., Kaufmann, S., Clark, B.: Semantic density analysis: comparing word meaning across time and phonetic space. In: Proceedings of the EACL 2009 Workshop on GEMS: Geometrical Models of Natural Language Semantics, pp. 104–111, March 2009

    Google Scholar 

  15. Hilpert, M., Gries, S.: Assessing frequency changes in multistage diachronic corpora: applications for historical corpus linguistics and the study of language acquisition. Literary Linguist. Comput. 24, 385–401 (2009)

    Google Scholar 

  16. Kulkarni, V., Al-Rfou, R., Perozzi, B., Skiena, S.: Statistically significant detection of linguistic change (2014)

    Google Scholar 

  17. Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models (2014)

    Google Scholar 

  18. Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Texas, Association for Computational Linguistics, November 2016

    Google Scholar 

  19. Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change (2018)

    Google Scholar 

  20. Tang, X., Qu, W., Chen, X.: Semantic change computation: a successive approach. In: Cao, L., et al. (eds.) BSI/BSIC -2013. LNCS (LNAI), vol. 8178, pp. 68–81. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-04048-6_7

    Chapter  Google Scholar 

  21. Tang, X., Qu, W., Chen, X.: Semantic change computation: a successive approach. World Wide Web 19, 375–415 (2016). https://doi.org/10.1007/s11280-014-0316-y

    Article  Google Scholar 

  22. Harris, Z.S.: Distributional structure. Word 10(2–3), 146–162 (1954)

    Article  Google Scholar 

  23. Firth, J.R.: A synopsis of linguistic theory, 1930–1955 (1957)

    Google Scholar 

  24. Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, Edinburgh, UK, Association for Computational Linguistics, July 2011

    Google Scholar 

  25. Rodda, M.A., Senaldi, M., Lenci, A.: Panta rei: tracking semantic change with distributional semantics in ancient Greek. Italian J. Comput. Linguist. 3, 11–24 (2017)

    Article  Google Scholar 

  26. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota, Association for Computational Linguistics, June 2019

    Google Scholar 

  27. Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, July 2020

    Google Scholar 

  28. Wijaya, D.T., Yeniterzi, R.: Understanding semantic change of words over centuries. In: Proceedings of the 2011 International Workshop on DETecting and Exploiting Cultural DiversiTy on the Social Web, DETECT 2011, pp. 35–40, New York, Association for Computing Machinery (2011)

    Google Scholar 

  29. Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, July 2020

    Google Scholar 

  30. Gruppi, M., Adali, S., Chen, P.: Schme at semeval-2020 task 1: a model ensemble for detecting lexical semantic change (2020)

    Google Scholar 

  31. Huang, J., Qi, F., Yang, C., Liu, Z., Sun, M.: COS960: a Chinese word similarity dataset of 960 word Pairs. arXiv preprint arXiv:1906.00247 (2019)

  32. Diao, Y.: The Development and Reform of Mainland Chinese in the New Era. Hung Yeh Publishing, Taibei (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, J., Peng, B., Huang, CR. (2023). Tracing Lexical Semantic Change with Distributional Semantics: Change and Stability. In: Su, Q., Xu, G., Yang, X. (eds) Chinese Lexical Semantics. CLSW 2022. Lecture Notes in Computer Science(), vol 13495. Springer, Cham. https://doi.org/10.1007/978-3-031-28953-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28953-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28952-1

  • Online ISBN: 978-3-031-28953-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics