Logic Tensor Networks for Top-N Recommendation | SpringerLink
Skip to main content

Logic Tensor Networks for Top-N Recommendation

  • Conference paper
  • First Online:
AIxIA 2022 – Advances in Artificial Intelligence (AIxIA 2022)

Abstract

Despite being studied for more than twenty years, state-of-the-art recommendation systems still suffer from important drawbacks which limit their usage in real-world scenarios. Among the well-known issues of recommender systems, there are data sparsity and the cold-start problem. These limitations can be addressed by providing some background knowledge to the model to compensate for the scarcity of data. Following this intuition, we propose to use Logic Tensor Networks (LTN) to tackle the top-n item recommendation problem. In particular, we show how LTN can be used to easily and effectively inject commonsense recommendation knowledge inside a recommender system. We evaluate our method on MindReader, a knowledge graph-based movie recommendation dataset containing plentiful side information. In particular, we perform an experiment to show how the benefits of the knowledge increase with the sparsity of the dataset. Eventually, a comparison with a standard Matrix Factorization approach reveals that our model is able to reach and, in many cases, outperform state-of-the-art performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7435
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9294
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Notice that this is different from the common use of the term grounding in logic, which indicates the operation of replacing the variables of a term or formula with constants or terms containing no variables.

  2. 2.

    https://github.com/logictensornetworks/LTNtorch.

  3. 3.

    https://github.com/tommasocarraro/LTNrec.

References

  1. Aiolli, F.: Efficient top-n recommendation for very large scale binary rated datasets. In: Proceedings of the 7th ACM Conference on Recommender Systems, RecSys 2013, pp. 273–280. Association for Computing Machinery, New York (2013). https://doi.org/10.1145/2507157.2507189

  2. Badreddine, S., d’Avila Garcez, A., Serafini, L., Spranger, M.: Logic tensor networks. Artif. Intell. 303, 103649 (2022). https://doi.org/10.1016/j.artint.2021.103649

    Article  MathSciNet  MATH  Google Scholar 

  3. Besold, T.R., et al.: Neural-symbolic learning and reasoning: a survey and interpretation (2017). https://doi.org/10.48550/ARXIV.1711.03902

  4. Bhargava, P., Phan, T., Zhou, J., Lee, J.: Who, what, when, and where: multi-dimensional collaborative recommendations using tensor factorization on sparse user-generated data. In: Proceedings of the 24th International Conference on World Wide Web, WWW 2015, pp. 130–140. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE (2015). https://doi.org/10.1145/2736277.2741077

  5. Brams, A.H., Jakobsen, A.L., Jendal, T.E., Lissandrini, M., Dolog, P., Hose, K.: MindReader: recommendation over knowledge graph entities with explicit user ratings. In: CIKM 2020, pp. 2975–2982. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3340531.3412759

  6. Carraro, T., Polato, M., Aiolli, F.: A look inside the black-box: towards the interpretability of conditioned variational autoencoder for collaborative filtering. In: Adjunct Publication of the 28th ACM Conference on User Modeling, Adaptation and Personalization, UMAP 2020 Adjunct, pp. 233–236. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3386392.3399305

  7. Carraro, T., Polato, M., Bergamin, L., Aiolli, F.: Conditioned variational autoencoder for top-n item recommendation. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds.) ICANN 2022. LNCS, vol. 13530, pp. 785–796. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15931-2_64

    Chapter  Google Scholar 

  8. Catherine, R., Cohen, W.: Personalized recommendations using knowledge graphs: a probabilistic logic programming approach. In: Proceedings of the 10th ACM Conference on Recommender Systems, RecSys 2016, pp. 325–332. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2959100.2959131

  9. Chen, H., Li, Y., Shi, S., Liu, S., Zhu, H., Zhang, Y.: Graph collaborative reasoning. In: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, WSDM 2022, pp. 75–84. Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3488560.3498410

  10. Chen, H., Shi, S., Li, Y., Zhang, Y.: Neural collaborative reasoning. In: Proceedings of the Web Conference 2021. ACM, April 2021. https://doi.org/10.1145/3442381.3449973

  11. Daniele, A., Serafini, L.: Neural networks enhancement with logical knowledge (2020). https://doi.org/10.48550/ARXIV.2009.06087

  12. Gridach, M.: Hybrid deep neural networks for recommender systems. Neurocomputing 413, 23–30 (2020). https://doi.org/10.1016/j.neucom.2020.06.025. https://www.sciencedirect.com/science/article/pii/S0925231220309966

  13. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: Proceedings of the 26th International Conference on World Wide Web, WWW 2017, pp. 173–182. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE (2017). https://doi.org/10.1145/3038912.3052569

  14. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 263–272 (2008). https://doi.org/10.1109/ICDM.2008.22

  15. Kimmig, A., Bach, S., Broecheler, M., Huang, B., Getoor, L., Mansinghka, V.: A short introduction to probabilistic soft logic, pp. 1–4 (2012). https://lirias.kuleuven.be/retrieve/204697

  16. Koren, Y., Bell, R.: Advances in collaborative filtering. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P. (eds.) Recommender Systems Handbook, pp. 145–186. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-85820-3_5

    Chapter  Google Scholar 

  17. Kouki, P., Fakhraei, S., Foulds, J., Eirinaki, M., Getoor, L.: HyPER: a flexible and extensible probabilistic framework for hybrid recommender systems. In: RecSys 2015, pp. 99–106. Association for Computing Machinery, New York (2015). https://doi.org/10.1145/2792838.2800175

  18. van Krieken, E., Acar, E., van Harmelen, F.: Analyzing differentiable fuzzy logic operators. Artif. Intell. 302, 103602 (2022). https://doi.org/10.1016/j.artint.2021.103602

    Article  MathSciNet  MATH  Google Scholar 

  19. Liang, D., Krishnan, R.G., Hoffman, M.D., Jebara, T.: Variational autoencoders for collaborative filtering. In: Proceedings of the 2018 World Wide Web Conference, WWW 2018, pp. 689–698. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE (2018). https://doi.org/10.1145/3178876.3186150

  20. Ning, X., Karypis, G.: SLIM: sparse linear methods for top-n recommender systems. In: 2011 IEEE 11th International Conference on Data Mining, pp. 497–506 (2011). https://doi.org/10.1109/ICDM.2011.134

  21. Polato, M., Aiolli, F.: Exploiting sparsity to build efficient kernel based collaborative filtering for top-n item recommendation. Neurocomputing 268, 17–26 (2017). Advances in Artificial Neural Networks, Machine Learning and Computational Intelligence. https://doi.org/10.1016/j.neucom.2016.12.090. https://www.sciencedirect.com/science/article/pii/S0925231217307592

  22. Polato, M., Aiolli, F.: Boolean kernels for collaborative filtering in top-n item recommendation. Neurocomput. 286(C), 214–225 (2018). https://doi.org/10.1016/j.neucom.2018.01.057

    Article  Google Scholar 

  23. Raedt, L.D., Kersting, K.: Statistical relational learning. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 916–924. Springer, Boston (2010). https://doi.org/10.1007/978-0-387-30164-8_786

    Chapter  Google Scholar 

  24. Rendle, S.: Factorization machines. In: 2010 IEEE International Conference on Data Mining, pp. 995–1000 (2010). https://doi.org/10.1109/ICDM.2010.127

  25. Ricci, F., Rokach, L., Shapira, B.: Recommender systems: introduction and challenges. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 1–34. Springer, Boston (2015). https://doi.org/10.1007/978-1-4899-7637-6_1

    Chapter  MATH  Google Scholar 

  26. Shenbin, I., Alekseev, A., Tutubalina, E., Malykh, V., Nikolenko, S.I.: RecVAE: a new variational autoencoder for top-n recommendations with implicit feedback. In: Proceedings of the 13th International Conference on Web Search and Data Mining. ACM, January 2020. https://doi.org/10.1145/3336191.3371831

  27. Steck, H.: Embarrassingly shallow autoencoders for sparse data. In: The World Wide Web Conference, WWW 2019, pp. 3251–3257. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3308558.3313710

  28. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv. Artif. Intell. (2009). https://doi.org/10.1155/2009/421425

  29. Xian, Y., et al.: CAFE: coarse-to-fine neural symbolic reasoning for explainable recommendation. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, CIKM 2020, pp. 1645–1654. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3340531.3412038

  30. Xin, X., Chen, B., He, X., Wang, D., Ding, Y., Jose, J.: CFM: convolutional factorization machines for context-aware recommendation. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-2019, pp. 3926–3932. International Joint Conferences on Artificial Intelligence Organization, July 2019. https://doi.org/10.24963/ijcai.2019/545

  31. Zhang, Y., Chen, X.: Explainable recommendation: a survey and new perspectives. Found. Trends® Inf. Retrieval 14(1), 1–101 (2020). https://doi.org/10.1561/1500000066

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso Carraro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carraro, T., Daniele, A., Aiolli, F., Serafini, L. (2023). Logic Tensor Networks for Top-N Recommendation. In: Dovier, A., Montanari, A., Orlandini, A. (eds) AIxIA 2022 – Advances in Artificial Intelligence. AIxIA 2022. Lecture Notes in Computer Science(), vol 13796. Springer, Cham. https://doi.org/10.1007/978-3-031-27181-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27181-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27180-9

  • Online ISBN: 978-3-031-27181-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics