Abstract
Despite being studied for more than twenty years, state-of-the-art recommendation systems still suffer from important drawbacks which limit their usage in real-world scenarios. Among the well-known issues of recommender systems, there are data sparsity and the cold-start problem. These limitations can be addressed by providing some background knowledge to the model to compensate for the scarcity of data. Following this intuition, we propose to use Logic Tensor Networks (LTN) to tackle the top-n item recommendation problem. In particular, we show how LTN can be used to easily and effectively inject commonsense recommendation knowledge inside a recommender system. We evaluate our method on MindReader, a knowledge graph-based movie recommendation dataset containing plentiful side information. In particular, we perform an experiment to show how the benefits of the knowledge increase with the sparsity of the dataset. Eventually, a comparison with a standard Matrix Factorization approach reveals that our model is able to reach and, in many cases, outperform state-of-the-art performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Notice that this is different from the common use of the term grounding in logic, which indicates the operation of replacing the variables of a term or formula with constants or terms containing no variables.
- 2.
- 3.
References
Aiolli, F.: Efficient top-n recommendation for very large scale binary rated datasets. In: Proceedings of the 7th ACM Conference on Recommender Systems, RecSys 2013, pp. 273–280. Association for Computing Machinery, New York (2013). https://doi.org/10.1145/2507157.2507189
Badreddine, S., d’Avila Garcez, A., Serafini, L., Spranger, M.: Logic tensor networks. Artif. Intell. 303, 103649 (2022). https://doi.org/10.1016/j.artint.2021.103649
Besold, T.R., et al.: Neural-symbolic learning and reasoning: a survey and interpretation (2017). https://doi.org/10.48550/ARXIV.1711.03902
Bhargava, P., Phan, T., Zhou, J., Lee, J.: Who, what, when, and where: multi-dimensional collaborative recommendations using tensor factorization on sparse user-generated data. In: Proceedings of the 24th International Conference on World Wide Web, WWW 2015, pp. 130–140. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE (2015). https://doi.org/10.1145/2736277.2741077
Brams, A.H., Jakobsen, A.L., Jendal, T.E., Lissandrini, M., Dolog, P., Hose, K.: MindReader: recommendation over knowledge graph entities with explicit user ratings. In: CIKM 2020, pp. 2975–2982. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3340531.3412759
Carraro, T., Polato, M., Aiolli, F.: A look inside the black-box: towards the interpretability of conditioned variational autoencoder for collaborative filtering. In: Adjunct Publication of the 28th ACM Conference on User Modeling, Adaptation and Personalization, UMAP 2020 Adjunct, pp. 233–236. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3386392.3399305
Carraro, T., Polato, M., Bergamin, L., Aiolli, F.: Conditioned variational autoencoder for top-n item recommendation. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds.) ICANN 2022. LNCS, vol. 13530, pp. 785–796. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15931-2_64
Catherine, R., Cohen, W.: Personalized recommendations using knowledge graphs: a probabilistic logic programming approach. In: Proceedings of the 10th ACM Conference on Recommender Systems, RecSys 2016, pp. 325–332. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2959100.2959131
Chen, H., Li, Y., Shi, S., Liu, S., Zhu, H., Zhang, Y.: Graph collaborative reasoning. In: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, WSDM 2022, pp. 75–84. Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3488560.3498410
Chen, H., Shi, S., Li, Y., Zhang, Y.: Neural collaborative reasoning. In: Proceedings of the Web Conference 2021. ACM, April 2021. https://doi.org/10.1145/3442381.3449973
Daniele, A., Serafini, L.: Neural networks enhancement with logical knowledge (2020). https://doi.org/10.48550/ARXIV.2009.06087
Gridach, M.: Hybrid deep neural networks for recommender systems. Neurocomputing 413, 23–30 (2020). https://doi.org/10.1016/j.neucom.2020.06.025. https://www.sciencedirect.com/science/article/pii/S0925231220309966
He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: Proceedings of the 26th International Conference on World Wide Web, WWW 2017, pp. 173–182. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE (2017). https://doi.org/10.1145/3038912.3052569
Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 263–272 (2008). https://doi.org/10.1109/ICDM.2008.22
Kimmig, A., Bach, S., Broecheler, M., Huang, B., Getoor, L., Mansinghka, V.: A short introduction to probabilistic soft logic, pp. 1–4 (2012). https://lirias.kuleuven.be/retrieve/204697
Koren, Y., Bell, R.: Advances in collaborative filtering. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P. (eds.) Recommender Systems Handbook, pp. 145–186. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-85820-3_5
Kouki, P., Fakhraei, S., Foulds, J., Eirinaki, M., Getoor, L.: HyPER: a flexible and extensible probabilistic framework for hybrid recommender systems. In: RecSys 2015, pp. 99–106. Association for Computing Machinery, New York (2015). https://doi.org/10.1145/2792838.2800175
van Krieken, E., Acar, E., van Harmelen, F.: Analyzing differentiable fuzzy logic operators. Artif. Intell. 302, 103602 (2022). https://doi.org/10.1016/j.artint.2021.103602
Liang, D., Krishnan, R.G., Hoffman, M.D., Jebara, T.: Variational autoencoders for collaborative filtering. In: Proceedings of the 2018 World Wide Web Conference, WWW 2018, pp. 689–698. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE (2018). https://doi.org/10.1145/3178876.3186150
Ning, X., Karypis, G.: SLIM: sparse linear methods for top-n recommender systems. In: 2011 IEEE 11th International Conference on Data Mining, pp. 497–506 (2011). https://doi.org/10.1109/ICDM.2011.134
Polato, M., Aiolli, F.: Exploiting sparsity to build efficient kernel based collaborative filtering for top-n item recommendation. Neurocomputing 268, 17–26 (2017). Advances in Artificial Neural Networks, Machine Learning and Computational Intelligence. https://doi.org/10.1016/j.neucom.2016.12.090. https://www.sciencedirect.com/science/article/pii/S0925231217307592
Polato, M., Aiolli, F.: Boolean kernels for collaborative filtering in top-n item recommendation. Neurocomput. 286(C), 214–225 (2018). https://doi.org/10.1016/j.neucom.2018.01.057
Raedt, L.D., Kersting, K.: Statistical relational learning. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 916–924. Springer, Boston (2010). https://doi.org/10.1007/978-0-387-30164-8_786
Rendle, S.: Factorization machines. In: 2010 IEEE International Conference on Data Mining, pp. 995–1000 (2010). https://doi.org/10.1109/ICDM.2010.127
Ricci, F., Rokach, L., Shapira, B.: Recommender systems: introduction and challenges. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 1–34. Springer, Boston (2015). https://doi.org/10.1007/978-1-4899-7637-6_1
Shenbin, I., Alekseev, A., Tutubalina, E., Malykh, V., Nikolenko, S.I.: RecVAE: a new variational autoencoder for top-n recommendations with implicit feedback. In: Proceedings of the 13th International Conference on Web Search and Data Mining. ACM, January 2020. https://doi.org/10.1145/3336191.3371831
Steck, H.: Embarrassingly shallow autoencoders for sparse data. In: The World Wide Web Conference, WWW 2019, pp. 3251–3257. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3308558.3313710
Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv. Artif. Intell. (2009). https://doi.org/10.1155/2009/421425
Xian, Y., et al.: CAFE: coarse-to-fine neural symbolic reasoning for explainable recommendation. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, CIKM 2020, pp. 1645–1654. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3340531.3412038
Xin, X., Chen, B., He, X., Wang, D., Ding, Y., Jose, J.: CFM: convolutional factorization machines for context-aware recommendation. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-2019, pp. 3926–3932. International Joint Conferences on Artificial Intelligence Organization, July 2019. https://doi.org/10.24963/ijcai.2019/545
Zhang, Y., Chen, X.: Explainable recommendation: a survey and new perspectives. Found. Trends® Inf. Retrieval 14(1), 1–101 (2020). https://doi.org/10.1561/1500000066
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Carraro, T., Daniele, A., Aiolli, F., Serafini, L. (2023). Logic Tensor Networks for Top-N Recommendation. In: Dovier, A., Montanari, A., Orlandini, A. (eds) AIxIA 2022 – Advances in Artificial Intelligence. AIxIA 2022. Lecture Notes in Computer Science(), vol 13796. Springer, Cham. https://doi.org/10.1007/978-3-031-27181-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-27181-6_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-27180-9
Online ISBN: 978-3-031-27181-6
eBook Packages: Computer ScienceComputer Science (R0)