Why Can Neural Networks Recognize Us by Our Finger Movements? | SpringerLink
Skip to main content

Why Can Neural Networks Recognize Us by Our Finger Movements?

  • Conference paper
  • First Online:
AIxIA 2022 – Advances in Artificial Intelligence (AIxIA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13796))

  • 631 Accesses

Abstract

Neurobehavioral evidence suggests that human movement may be characterized by relatively stable individual differences (i.e. individual motor signatures or IMS). While most research has focused on the macroscopic level, all attempts to extract IMS have overlooked the fact that functionally relevant discontinuities are clearly visible when zooming into the microstructure of movements. These recurrent (2–3 Hz) speed breaks (sub-movements) reflect an intermittent motor control policy that might provide a far more robust way to identify IMSs.

In this study, we show that individuals can be recognized from motion capture data using a neural network. In particular, we trained a classifier (a convolutional neural network) on a data set composed of time series recording the positions of index finger movements of 60 individuals; in tests, the neural network achieves an accuracy of 80%.

We also investigated how different pre-processing techniques affect the accuracy in order to assess which motion features more strongly characterize each individual and, in particular, whether the presence of submovements in the data can improve the classifier’s performance.

This work was partly supported by the University of Ferrara FIRD 2022 project “Analisi di serie temporali da motion capture con tecniche di machine learning”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7435
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9294
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018). https://doi.org/10.1109/ACCESS.2018.2870052

    Article  Google Scholar 

  2. Ahmad, M.A., Eckert, C., Teredesai, A.: Interpretable machine learning in healthcare. In: Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, BCB 2018, pp. 559–560. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3233547.3233667

  3. Assaf, R., Schumann, A.: Explainable deep neural networks for multivariate time series predictions. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, pp. 6488–6490. International Joint Conferences on Artificial Intelligence Organization, Macao (2019). https://doi.org/10.24963/ijcai.2019/932

  4. Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K.: How to explain individual classification decisions, p. 29 (2010)

    Google Scholar 

  5. Burkart, N., Huber, M.F.: A survey on the explainability of supervised machine learning. J. Artif. Intell. Res. 70, 245–317 (2021). https://doi.org/10.1613/jair.1.12228

    Article  MathSciNet  MATH  Google Scholar 

  6. Burke, R.E.: Motor units: anatomy, physiology, and functional organization, pp. 345–422. Wiley (2011). https://doi.org/10.1002/cphy.cp010210, https://onlinelibrary.wiley.com/doi/abs/10.1002/cphy.cp010210

  7. Burrell, J.: How the machine ‘thinks’: understanding opacity in machine learning algorithms. Big Data Soc. 3(1), 205395171562251 (2016). https://doi.org/10.1177/2053951715622512

  8. Cui, Z., Chen, W., Chen, Y.: Multi-scale convolutional neural networks for time series classification (2016)

    Google Scholar 

  9. Ernst, C.: Artificial intelligence and autonomy: self-determination in the age of automated systems. In: Wischmeyer, T., Rademacher, T. (eds.) Regulating Artificial Intelligence, pp. 53–73. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-32361-5_3

    Chapter  Google Scholar 

  10. Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.-A.: Deep learning for time series classification: a review. Data Min. Knowl. Disc. 33(4), 917–963 (2019). https://doi.org/10.1007/s10618-019-00619-1

    Article  MathSciNet  MATH  Google Scholar 

  11. Foster, K.R., Koprowski, R., Skufca, J.D.: Machine learning, medical diagnosis, and biomedical engineering research - commentary. Biomed. Eng. Online 13(1), 94 (2014). https://doi.org/10.1186/1475-925X-13-94

    Article  Google Scholar 

  12. Gee, A.H., Garcia-Olano, D., Ghosh, J., Paydarfar, D.: Explaining deep classification of time-series data with learned prototypes, p. 8 (2019)

    Google Scholar 

  13. Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L.: Explaining explanations: an overview of interpretability of machine learning. In: 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), pp. 80–89 (2018). https://doi.org/10.1109/DSAA.2018.00018

  14. Gohar, I., et al.: Person re-identification using deep modeling of temporally correlated inertial motion patterns. Sensors 20(3), 949 (2020). https://doi.org/10.3390/s20030949

    Article  Google Scholar 

  15. Goodfellow, S.D., Goodwin, A., Greer, R., Laussen, P.C., Mazwi, M., Eytan, D.: Towards understanding ECG rhythm classification using convolutional neural networks and attention mappings, p. 18 (2018)

    Google Scholar 

  16. Heenaye-Mamode Khan, M., et al.: Multi- class classification of breast cancer abnormalities using deep convolutional neural network (CNN). PLOS One 16(8), 1–15 (2021). https://doi.org/10.1371/journal.pone.0256500

    Article  Google Scholar 

  17. Hu, Y., Sokolova, M.: Convolutional neural networks in multi-class classification of medical data, p. 13 (2020)

    Google Scholar 

  18. Kim, Y.: Convolutional neural networks for sentence classification (2014)

    Google Scholar 

  19. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989). https://doi.org/10.1162/neco.1989.1.4.541

    Article  Google Scholar 

  20. Leventi-Peetz, A.M., Östreich, T.: Deep learning reproducibility and explainable AI (XAI) (2022)

    Google Scholar 

  21. Li, L., Prakash, B.A., Faloutsos, C.: Parsimonious linear fingerprinting for time series. Proc. VLDB Endow. 3(1–2), 385–396 (2010). https://doi.org/10.14778/1920841.1920893

    Article  Google Scholar 

  22. Little, J.J., Boyd, J.E.: Recognizing people by their gait: the shape of motion, p. 33 (1998)

    Google Scholar 

  23. Park, G., Lee, K.M., Koo, S.: Uniqueness of gait kinematics in a cohort study. Sci. Rep. 11(1), 15248 (2021). https://doi.org/10.1038/s41598-021-94815-z

    Article  Google Scholar 

  24. Preece, A.: Asking ‘Why’ in AI: explainability of intelligent systems – perspectives and challenges. Intell. Syst. Account. Financ. Manage. 25(2), 63–72 (2018). https://doi.org/10.1002/isaf.1422

    Article  Google Scholar 

  25. Repp, B.H., Su, Y.-H.: Sensorimotor synchronization: a review of recent research (2006–2012). Psychon. Bull. Rev. 20(3), 403–452 (2013). https://doi.org/10.3758/s13423-012-0371-2

    Article  Google Scholar 

  26. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should i trust you?”: explaining the predictions of any classifier (2016)

    Google Scholar 

  27. Samek, W., Montavon, G., Lapuschkin, S., Anders, C.J., Müller, K.R.: Explaining deep neural networks and beyond: a review of methods and applications. Proc. IEEE 109(3), 247–278 (2021). https://doi.org/10.1109/JPROC.2021.3060483

    Article  Google Scholar 

  28. Selbst, A.D., Powles, J.: Meaningful information and the right to explanation. Int. Data Priv. Law 7(4), 233–242 (2017). https://doi.org/10.1093/idpl/ipx022

    Article  Google Scholar 

  29. Šimić, I., Sabol, V., Veas, E.: XAI methods for neural time series classification: a brief review (2021)

    Google Scholar 

  30. Tomassini, A., et al.: Interpersonal synchronization of movement intermittency. iScience 25(4), 104096 (2022). https://doi.org/10.1016/j.isci.2022.104096

    Article  Google Scholar 

  31. Vale, D., El-Sharif, A., Ali, M.: Explainable artificial intelligence (XAI) post-hoc explainability methods: risks and limitations in non-discrimination law. AI Ethics (2022). https://doi.org/10.1007/s43681-022-00142-y

  32. Woan Ching, S.L., et al.: Multiclass convolution neural network for classification of COVID-19 CT images. Comput. Intell. Neurosci. 2022, 1–15 (2022). https://doi.org/10.1155/2022/9167707

  33. Yang, J.B., Nguyen, M.N., San, P.P., Li, X.L., Krishnaswamy, S.: Deep convolutional neural networks on multichannel time series for human activity recognition, p. 7 (2015)

    Google Scholar 

  34. Zheng, Y., Liu, Q., Chen, E., Ge, Y., Zhao, J.L.: Time series classification using multi-channels deep convolutional neural networks. In: Li, F., Li, G., Hwang, S., Yao, B., Zhang, Z. (eds.) WAIM 2014. LNCS, vol. 8485, pp. 298–310. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08010-9_33

    Chapter  Google Scholar 

  35. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2921–2929 (2016). https://doi.org/10.1109/CVPR.2016.319

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Mariolina Galdi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Galdi, E.M., Alberti, M., D’Ausilio, A., Tomassini, A. (2023). Why Can Neural Networks Recognize Us by Our Finger Movements?. In: Dovier, A., Montanari, A., Orlandini, A. (eds) AIxIA 2022 – Advances in Artificial Intelligence. AIxIA 2022. Lecture Notes in Computer Science(), vol 13796. Springer, Cham. https://doi.org/10.1007/978-3-031-27181-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27181-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27180-9

  • Online ISBN: 978-3-031-27181-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics