Abstract
We develop infinitely many intuitionistic connexive logics \(\textsf{C}_{m,n}\) with \(m> 0\) and \(n\ge 0\) which are obtained from intuitionistic propositional logic by adding the negation sign \(\sim \) which admits principles of connexive implication and \({\sim }^{2m+n}p \leftrightarrow {\sim }^n p\). We introduce \(\langle m,n \rangle \)-connexive logics and show that lattices of these connexive logics are isomorphic to lattices of superintuitionistic logics. Furthermore, we give cut-free G3-style sequent calculi for \(\langle m,n \rangle \)-connexive logics.
This work was supported by Chinese National Funding of Social Sciences (Grant no. 18ZDA033).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Berman, J.: Distributive lattices with an additional unary operation. Aequationes Math. 16, 165–171 (1977)
Chagrov, A., Zakharyaschev, M.: Modal Logic. Clarendon Press, Oxford (1997)
Cornejo, J.M., Sankappanavar, H.P.: A logic for dually hemimorphic semi-Heyting algebras and its axiomatic extensions. Bull. Section Logic (2022, to appear)
Fazio, D., Ledda, A., Paoli, F.: Intuitionistic logic is a connexive logic. arXiv:2208.14715v1 [math.LO] (2022)
Humberstone, L.: Contra-classical logics. Australas. J. Philos. 78(4), 438–474 (2000)
Kamide, N.: Paraconsistent double negations as classical and intuitionistic negations. Stud. Logica 105(6), 1167–1191 (2017)
Kamide, N.: Kripke-completeness and cut-elimination theorems for intuitionistic paradefinite logics with and without quasi-explosion. J. Philos. Log. 49(6), 1185–1212 (2020)
Kamide, N., Wansing, H.: Connexive modal logic based on positive S4. Logic without Frontiers. Festschrift for Walter Alexandre Carnielli on the Occasion of His 60th Birthday, pp. 389–409. College Publications, London (2011)
Kamide, N., Wansing, H.: Proof theory of Nelson’s paraconsistent logic: a uniform perspective. Theor. Comput. Sci. 415, 1–38 (2012)
Kamide, N., Wansing, H.: Proof Theory of N4-Related Paraconsistent Logics. College Publications, London (2015)
Ma, M., Lin, Y.: Countably many weakenings of Belnap-Dunn logic. Stud. Logica 108, 163–198 (2020)
Malinowski, J., Palczewski, R.: Relating semantics for connexive logic. In: Giordani, A., Malinowski, J. (eds.) Logic in High Definition. TL, vol. 56, pp. 49–65. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-53487-5_4
McCall, S.: Non-classical Propositional Calculi. Ph.D thesis, University of Oxford (1964)
McCall, S.: Connexive implication. J. Symbolic Log. 31(3), 415–433 (1966)
McCall, S.: A history of connexivity. In: Gabbay, D.M., Pelletier, F.J., Woods, J. (eds.) Handbook of the History of Logic, vol. 11, pp. 415–449. Elsevier (2012)
Negri, S., von Plato, J.: Structural Proof Theory. Cambridge University Press (2001)
Odinstov, S.: Constructive Negations and Paraconsistency. Springer, Heidelberg (2008). https://doi.org/10.1007/978-1-4020-6867-6
Omori, H.: From paraconsistent logic to dialetheic logic. In: Andreas, H., Verdée, P. (eds.) Logical Studies of Paraconsistent Reasoning in Science and Mathematics. TL, vol. 45, pp. 111–134. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40220-8_8
Omori, H., Wansing, H.: On contra-classical variants of Nelson logic N4 and its classical extension. Rev. Symbolic Log. 11(4), 805–820 (2018)
Omori, H., Wansing, H.: 40 years of FDE: an introductory overview. Stud. Logica 105(6), 1021–1049 (2017)
Omori, H., Wansing, H.: Connexive logics: an overview and current trends. Logic Log. Philos. 28(3), 371–387 (2019)
Priest, G.: Negation as cancellation, and connexive logic. Topoi 18(2), 141–148 (1999)
Routley, R.: Semantics for connexive logics. I. Studia Logica 37(4), 393–412 (1978)
Wansing, H.: Connexive modal logic. In: Schmidt, R., Pratt-Hartmann, I., Reynolds, M., Wansing, H. (eds.) Advances in Modal Logic, vol. 5, pp. 367–383. King’s College Publications, London (2004)
Wansing, H.: Negation. In: Goble, L. (eds.) The Blackwell Guide to Philosophical Logic, pp. 415–436. Blackwell Publishers Ltd. (2001)
Wansing, H., Skurt, D.: Negation as cancellation, connexive logic, and qLPm. Australas. J. Log. 15(2), 476–488 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendices
Appendix
A Proof of Lemma 11
Proof
Assume \(c(\varphi )=0\). Suppose \(\varphi =p\). If \(k<2m+n\), then \({\sim }^k p,\varGamma \Rightarrow {\sim }^k p\) is an instance of \(\mathrm {(Id)}\). Suppose \(k\ge 2m+n\). There exist \(l\in [0,2m+n)\) and \(r\ge 1\) with \(k=2rm+l\). Obviously \(\vdash {\sim }^l p,\varGamma \Rightarrow {\sim }^l p\). By \(({{\sim }^{2m+n}}{\Rightarrow })\) and \(({\Rightarrow }{{\sim }^{2m+n}})\), \(\vdash {\sim }^k p,\varGamma \Rightarrow {\sim }^k p\). Suppose \(\varphi =\bot \). If \(k<2m+n\), then \({\sim }^k \bot ,\varGamma \Rightarrow {\sim }^k \bot \) is an instance of \(\mathrm {(\bot \!\!\Rightarrow )}\). Suppose \(k\ge 2m+n\). There exist \(l\in [0,2m+n)\) and \(r\ge 1\) with \(k=2rm+l\). Then \(\vdash {\sim }^l \bot ,\varGamma \Rightarrow {\sim }^l \bot \). By \(({{\sim }^{2m+n}}{\Rightarrow })\) and \(({\Rightarrow }{{\sim }^{2m+n}})\), \(\vdash {\sim }^k\bot ,\varGamma \Rightarrow {\sim }^k\bot \). Assume \(c(\varphi )>0\). Suppose \(k\ge 2m+n\). There exist \(l\in [0,2m+n)\) and \(r\ge 1\) with \(k=2rm+l\). Clearly \(c({\sim }^l\varphi )<c({\sim }^k\varphi )\). By induction hypothesis, \(\vdash {\sim }^l\varphi ,\varGamma \Rightarrow {\sim }^l\varphi \). By \(({{\sim }^{2m+n}}{\Rightarrow })\) and \(({\Rightarrow }{{\sim }^{2m+n}})\), \(\vdash {\sim }^k\varphi ,\varGamma \Rightarrow {\sim }^k\varphi \). Suppose \(k<2m+n\). Assume \(\varphi =\varphi _1\wedge \varphi _2\). Let \(\varphi ={\sim }^e(\varphi _1\wedge \varphi _2)\) with \(e\in E[0,2m+n)\). Clearly \(c({\sim }^e\varphi _1)<c({\sim }^e(\varphi _1\wedge \varphi _2))\) and \(c({\sim }^e\varphi _2)<c({\sim }^e(\varphi _1\wedge \varphi _2))\). By induction hypothesis, \(\vdash {\sim }^e\varphi _1,{\sim }^e\varphi _2,\varGamma \) \(\Rightarrow {\sim }^e\varphi _1\) and \(\vdash {\sim }^e\varphi _1,{\sim }^e\varphi _2,\varGamma \Rightarrow {\sim }^e\varphi _2\). By \(({\Rightarrow }\wedge )\), \(\vdash {\sim }^e\varphi _1,{\sim }^e\varphi _2,\varGamma \Rightarrow {\sim }^e(\varphi _1\wedge \varphi _2)\). By \((\wedge {\Rightarrow })\), \(\vdash {\sim }^e(\varphi _1\wedge \varphi _2),\varGamma \Rightarrow {\sim }^e(\varphi _1\wedge \varphi _2)\). Now let \(\varphi ={\sim }^o(\varphi _1\wedge \varphi _2)\) with \(o\in O[0,2m+n)\). Clearly, \(c({\sim }^o\varphi _1)<c({\sim }^o(\varphi _1\wedge \varphi _2))\) and \(c({\sim }^o\varphi _2)<c({\sim }^o(\varphi _1\wedge \varphi _2))\). By induction hypothesis, \(\vdash {\sim }^o\varphi _1,\varGamma \Rightarrow {\sim }^o\varphi _1\) and \(\vdash {\sim }^o\varphi _2,\varGamma \Rightarrow {\sim }^o\varphi _2\). By \(({\Rightarrow }{\sim }{\wedge })\), \(\vdash {\sim }^o\varphi _1,\varGamma \Rightarrow {\sim }^o(\varphi _1\wedge \varphi _2)\) and \(\vdash {\sim }^o\varphi _2,\varGamma \Rightarrow {\sim }^o(\varphi _1\wedge \varphi _2)\). By \(({\sim }{\wedge }{\Rightarrow })\), \(\vdash {\sim }^o(\varphi _1\wedge \varphi _2),\varGamma \Rightarrow {\sim }^o(\varphi _1\wedge \varphi _2)\). The case \(\varphi =\varphi _1\vee \varphi _2\) is shown similarly. Suppose \(\varphi = \varphi _1\rightarrow \varphi _2\). Clearly \(c(\varphi _1)<c({\sim }^k (\varphi _1\rightarrow \varphi _2))\) and \(c(\varphi _2)<c({\sim }^k (\varphi _1\rightarrow \varphi _2))\). By induction hypothesis, \(\vdash \varphi _1,{\sim }^k (\varphi _1\rightarrow \varphi _2),\varGamma \Rightarrow \varphi _1\) and \(\vdash \varphi _1,{\sim }^k \varphi _2,\varGamma \) \(\Rightarrow {\sim }^k \varphi _2\). By \(({\rightarrow }{\Rightarrow })\), \(\vdash \varphi _1,{\sim }^k (\varphi _1\rightarrow \varphi _2),\varGamma \Rightarrow {\sim }^k \varphi _2\). By \(({\Rightarrow }{\rightarrow })\), \(\vdash {\sim }^k (\varphi _1\rightarrow \varphi _2),\varGamma \Rightarrow {\sim }^k (\varphi _1\rightarrow \varphi _2)\). \(\square \)
B Proof of Lemma 14
Proof
Assume \(\vdash _h\varphi ,\varphi ,\varGamma \Rightarrow \psi \). The proof proceeds by induction on h and subinduction on the complexity \(c(\varphi )\). The case \(h=0\) is trivial. Suppose \(h>0\) and \(\varphi ,\varphi ,\varGamma \Rightarrow \psi \) is obtained by a rule (R). Suppose \(\varphi \) is not principal in (R). Then \(\vdash \varphi ,\varGamma \Rightarrow \psi \) by induction hypothesis and (R). For example, let (R) be \(\mathrm {(\Rightarrow \wedge )}\) with premisses \(\vdash _{h-1}\varphi ,\varphi ,\varGamma \Rightarrow {\sim }^e\psi _1 \) and \( \vdash _{h-1}\varphi ,\varphi ,\varGamma \Rightarrow {\sim }^e\psi _2\), and conclusion \(\vdash _{h}\varphi ,\varphi ,\varGamma \Rightarrow {\sim }^e(\psi _1\wedge \psi _2)\). By induction hypothesis, \(\vdash _{h-1}\varphi ,\varGamma \Rightarrow {\sim }^e\psi _1\) and \(\vdash _{h-1}\varphi ,\varGamma \Rightarrow {\sim }^e\psi _2\). By \(\mathrm {(\Rightarrow \wedge )}\), \(\vdash _h\varphi , \varGamma \Rightarrow {\sim }^e(\psi _1\wedge \psi _2)\). Other cases are shown similarly. Suppose \(\varphi \) is principal in (R). Assume \(\varphi ={\sim }^e(\varphi _1\wedge \varphi _2)\). Let (R) end with premiss \(\vdash _{h-1}{\sim }^e\varphi _1,{\sim }^e\varphi _2,{\sim }^e(\varphi _1\wedge \varphi _2),\varGamma \Rightarrow \psi \) and conclusion \(\vdash _h{\sim }^e(\varphi _1\wedge \varphi _2),{\sim }^e(\varphi _1\wedge \varphi _2),\varGamma \Rightarrow \psi \). By Lemma 13 (1), \(\vdash _{h-1}{\sim }^e\varphi _1,{\sim }^e\varphi _2,{\sim }^e\varphi _1,{\sim }^e\varphi _2,\varGamma \Rightarrow \psi \). By induction hypothesis, \(\vdash _{h-1}{\sim }^e\varphi _1,{\sim }^e\varphi _2,\varGamma \Rightarrow \psi \). By \(({\wedge }{\Rightarrow })\), \(\vdash _h{\sim }^e(\varphi _1\wedge \varphi _2),\varGamma \Rightarrow \psi \). Assume \(\varphi ={\sim }^o(\varphi _1\wedge \varphi _2)\). Let (R) end with premisses \(\vdash {\sim }^o\varphi _1, {\sim }^o(\varphi _1\wedge \varphi _2),\varGamma \Rightarrow \psi \) and \( \vdash {\sim }^o\varphi _2, {\sim }^o(\varphi _1\wedge \varphi _2),\varGamma \Rightarrow \psi \), and conclusion \(\vdash _h{\sim }^o(\varphi _1\wedge \varphi _2),{\sim }^o(\varphi _1\wedge \varphi _2),\varGamma \Rightarrow \psi \). By Lemma 13 (4), \(\vdash {\sim }^o\varphi _1, {\sim }^o\varphi _1,\varGamma \Rightarrow \psi \) and \(\vdash {\sim }^o\varphi _2, {\sim }^o\varphi _2,\varGamma \Rightarrow \psi \). By induction hypothesis, \(\vdash {\sim }^o\varphi _1, \varGamma \Rightarrow \psi \) and \(\vdash {\sim }^o\varphi _2,\varGamma \Rightarrow \psi \). By \(({\sim }{\wedge }{\Rightarrow })\), \(\vdash _h {\sim }^o(\varphi _1\wedge \varphi _2),\varGamma \Rightarrow \psi \). Assume \(\varphi ={\sim }^e(\varphi _1\vee \varphi _2)\) or \({\sim }^o(\varphi _1\vee \varphi _2)\). The proof is similar to previous cases. Assume \(\varphi ={\sim }^{2m+n}\chi \). Let (R) end with premiss \(\vdash {\sim }^n\chi ,{\sim }^{2m+n}\chi ,\varGamma \Rightarrow \psi \) and conclusion \(\vdash _{h}{\sim }^{2m+n}\chi ,{\sim }^{2m+n}\chi ,\varGamma \Rightarrow \psi \). By Lemma 13 (5), \(\vdash {\sim }^n\chi ,{\sim }^n\chi ,\varGamma \Rightarrow \psi \). By induction hypothesis, \(\vdash {\sim }^n\chi ,\varGamma \Rightarrow \psi \). By \(({\sim }^{2m+n}{\Rightarrow })\), \(\vdash _h{\sim }^{2m+n}\chi ,\varGamma \Rightarrow \psi \). Assume \(\varphi ={\sim }^k(\varphi _1\rightarrow \varphi _2)\). Let (R) end with premisses \(\vdash {\sim }^k(\varphi _1\rightarrow \varphi _2),{\sim }^k(\varphi _1\rightarrow \varphi _2),\varGamma \Rightarrow \varphi _1 \) and \( \vdash {\sim }^k\varphi _2,\varGamma \Rightarrow \psi \), and conclusion \(\vdash _{h}{\sim }^k(\varphi _1\rightarrow \varphi _2),{\sim }^k(\varphi _1\rightarrow \varphi _2),\varGamma \Rightarrow \psi \). By induction hypothesis, \(\vdash {\sim }^k(\varphi _1\rightarrow \varphi _2),\varGamma \Rightarrow \varphi _1\). By premiss and \(\mathrm {(\rightarrow \Rightarrow )}\), \(\vdash _h{\sim }^k(\varphi _1\rightarrow \varphi _2),\varGamma \Rightarrow \psi \). \(\square \)
C Proof of Theorem 6
Proof
Assume \(\vdash _h\varGamma \Rightarrow \varphi \) and \(\vdash _j\varphi ,\varDelta \Rightarrow \psi \). We show \(\vdash \varGamma ,\varDelta \Rightarrow \psi \) by simultaneous induction on the cut height \(h+j\) and the complexity \(c(\varphi )\). Assume \(h=0\) or \(j=0\). Suppose \(h=0\). Suppose \(\varGamma \Rightarrow \varphi \) is an instance of \(\mathrm {(Id)}\). Then \(\varphi \in \varGamma \). By \(\vdash \varphi ,\varDelta \Rightarrow \psi \) and \(\mathrm {(Wk)}\), \(\vdash \varGamma ,\varDelta \Rightarrow \psi \). If \(\bot \in \varGamma \), then \(\vdash \varGamma ,\varDelta \Rightarrow \psi \). Suppose \(j=0\). Let \(\varphi ,\varDelta \Rightarrow \psi \) be an instance of \(\mathrm {(Id)}\). If \(\varphi =\psi \), by \(\vdash \varGamma \Rightarrow \varphi \) and \((\textrm{Wk})\), \(\vdash \varGamma ,\varDelta \Rightarrow \varphi \). Let \(\varphi ,\varDelta \Rightarrow \psi \) be an instance of \(\mathrm {(\bot )}\). If \(\bot \in \varDelta \), then \(\vdash \varGamma ,\varDelta \Rightarrow \psi \). If \(\varphi =\bot \), by \(\vdash \varGamma \Rightarrow \bot \), Lemma 15 and \((\textrm{Wk})\), \(\vdash \varGamma ,\varDelta \Rightarrow \psi \). Now assume \(h,j>0\). Let the premisses of \(\mathrm {(Cut)}\) be obtained by the rules \(\mathrm {(R1)}\) and \(\mathrm {(R2)}\) respectively. Suppose \(\varphi \) is not principal in \(\mathrm {(R1)}\). Then \(\mathrm {(R1)}\) is a left rule. We apply \(\mathrm {(Cut)}\) to the premiss(es) of \(\mathrm {(R1)}\) and \(\varphi ,\varDelta \Rightarrow \psi \), and then apply \((\textrm{R1})\). Suppose \(\varphi \) is not principal in \(\mathrm {(R2)}\). We apply \(\mathrm {(Cut)}\) to \(\varGamma \Rightarrow \varphi \) and the premiss(es) of \(\mathrm {(R2)}\), and then apply \(\mathrm {(R2)}\). Suppose \(\varphi \) is principal in both \(\mathrm {(R1)}\) and \(\mathrm {(R2)}\). The proof proceeds by induction on \(c(\varphi )\). We have the following cases:
(1) \(\varphi ={\sim }^e(\varphi _1\wedge \varphi _2)\) and the derivations end with
By applying \(\mathrm {(Cut)}\) to sequents with cut formula of less complexity, we have

(2) \(\varphi ={\sim }^e (\varphi _1\vee \varphi _2)\) and the derivations end with
By applying \(\mathrm {(Cut)}\) to sequents with cut formula of less complexity, and by (Ctr), we obtain \(\varGamma ,\varDelta \Rightarrow \psi \).
(3) \(\varphi ={\sim }^o (\varphi _1\wedge \varphi _2)\) or \({\sim }^o (\varphi _1\vee \varphi _2)\). The proof is similar to (1) or (2).
(4) \(\varphi ={\sim }^k (\varphi _1\rightarrow \varphi _2)\) and the derivations end with
By applying \(\mathrm {(Cut)}\) to sequents with cut formula of less complexity, we have \(\vdash {\sim }^k (\varphi _1\rightarrow \varphi _2),\varGamma ,\varDelta ,\varDelta \Rightarrow \psi \). By \((\textrm{Ctr})\), \(\vdash {\sim }^k (\varphi _1\rightarrow \varphi _2),\varGamma ,\varDelta \Rightarrow \psi \).
(5) \(\varphi ={\sim }^{2m+n} \psi \) and the derivations end with
By applying \(\mathrm {(Cut)}\) to premisses, we get \(\vdash \varGamma ,\varDelta \Rightarrow \chi \). \(\square \)
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, H., Ma, M. (2023). An Infinity of Intuitionistic Connexive Logics. In: Banerjee, M., Sreejith, A.V. (eds) Logic and Its Applications. ICLA 2023. Lecture Notes in Computer Science, vol 13963. Springer, Cham. https://doi.org/10.1007/978-3-031-26689-8_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-26689-8_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-26688-1
Online ISBN: 978-3-031-26689-8
eBook Packages: Computer ScienceComputer Science (R0)