Abstract
Class-incremental learning for semantic segmentation (CiSS) is presently a highly researched field which aims at updating a semantic segmentation model by sequentially learning new semantic classes. A major challenge in CiSS is overcoming the effects of catastrophic forgetting, which describes the sudden drop of accuracy on previously learned classes after the model is trained on a new set of classes. Despite latest advances in mitigating catastrophic forgetting, the underlying causes of forgetting specifically in CiSS are not well understood. Therefore, in a set of experiments and representational analyses, we demonstrate that the semantic shift of the background class and a bias towards new classes are the major causes of forgetting in CiSS. Furthermore, we show that both causes mostly manifest themselves in deeper classification layers of the network, while the early layers of the model are not affected. Finally, we demonstrate how both causes are effectively mitigated utilizing the information contained in the background, with the help of knowledge distillation and an unbiased cross-entropy loss.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
As the focus of this paper is to understand the general causes of forgetting in CiSS, we leave the study of the impact of different splits, more classes and longer task sequences to future work.
- 2.
The confusion matrices are shown in the supplementary material.
References
Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., Tuytelaars, T.: Memory aware synapses: learning what (not) to forget. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)
Cermelli, F., Fontanel, D., Tavera, A., Ciccone, M., Caputo, B.: Incremental learning in semantic segmentation from image labels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4371–4381 (2022)
Cermelli, F., Mancini, M., Bulo, S.R., Ricci, E., Caputo, B.: Modeling the background for incremental learning in semantic segmentation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 9230–9239 (2020). https://doi.org/10.1109/CVPR42600.2020.00925. https://arxiv.org/abs/2002.00718
Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)
Csiszárik, A., Kőrösi-Szabó, P., Matszangosz, A., Papp, G., Varga, D.: Similarity and matching of neural network representations. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems, vol. 34, pp. 5656–5668. Curran Associates, Inc. (2021). https://proceedings.neurips.cc/paper/2021/file/2cb274e6ce940f47beb8011d8ecb1462-Paper.pdf
Davari, M., Asadi, N., Mudur, S., Aljundi, R., Belilovsky, E.: Probing representation forgetting in supervised and unsupervised continual learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16712–16721 (2022)
Delange, M., et al.: A continual learning survey: defying forgetting in classification tasks. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3366–3385 (2021). https://doi.org/10.1109/TPAMI.2021.3057446
Douillard, A., Chen, Y., Dapogny, A., Cord, M.: PLOP: learning without forgetting for continual semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2021)
Douillard, A., Chen, Y., Dapogny, A., Cord, M.: Tackling catastrophic forgetting and background shift in continual semantic segmentation. CoRR abs/2106.15287 (2021). https://arxiv.org/abs/2106.15287
Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results (2012). http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
French, R.: Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 3(4), 128–135 (1999). https://doi.org/10.1016/s1364-6613(99)01294-2
Gallardo, J., Hayes, T.L., Kanan, C.: Self-supervised training enhances online continual learning. In: British Machine Vision Conference (BMVC) (2021)
Hayes, T.L., Kafle, K., Shrestha, R., Acharya, M., Kanan, C.: REMIND your neural network to prevent catastrophic forgetting. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 466–483. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_28
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: NIPS Deep Learning and Representation Learning Workshop (2015). http://arxiv.org/abs/1503.02531
Hou, S., Pan, X., Loy, C.C., Wang, Z., Lin, D.: Learning a unified classifier incrementally via rebalancing. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Hsu, Y.C., Liu, Y.C., Ramasamy, A., Kira, Z.: Re-evaluating continual learning scenarios: a categorization and case for strong baselines. In: NeurIPS Continual learning Workshop (2018). https://arxiv.org/abs/1810.12488
Kalb, T., Roschani, M., Ruf, M., Beyerer, J.: Continual learning for class- and domain-incremental semantic segmentation. In: 2021 IEEE Intelligent Vehicles Symposium (IV), pp. 1345–1351 (2021). https://doi.org/10.1109/IV48863.2021.9575493
Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. 114(13), 3521–3526 (2017). https://doi.org/10.1073/pnas.1611835114. https://www.pnas.org/doi/abs/10.1073/pnas.1611835114
Klingner, M., Bär, A., Donn, P., Fingscheidt, T.: Class-incremental learning for semantic segmentation re-using neither old data nor old labels. In: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), pp. 1–8. IEEE (2020)
Kornblith, S., Norouzi, M., Lee, H., Hinton, G.: Similarity of neural network representations revisited. In: 36th International Conference on Machine Learning, ICML 2019, vol. 2019-June, pp. 6156–6175 (2019). https://arxiv.org/abs/1905.00414
Lesort, T., George, T., Rish, I.: Continual learning in deep networks: an analysis of the last layer (2021). https://doi.org/10.48550/ARXIV.2106.01834. https://arxiv.org/abs/2106.01834
Lesort, T., Stoian, A., Filliat, D.: Regularization shortcomings for continual learning (2020)
Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2935–2947 (2018). https://doi.org/10.1109/TPAMI.2017.2773081
Maracani, A., Michieli, U., Toldo, M., Zanuttigh, P.: Recall: replay-based continual learning in semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 7026–7035 (2021)
Masana, M., Liu, X., Twardowski, B., Menta, M., Bagdanov, A.D., van de Weijer, J.: Class-incremental learning: survey and performance evaluation. arXiv preprint arXiv:2010.15277 (2020)
McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: the sequential learning problem. In: Psychology of Learning and Motivation - Advances in Research and Theory, vol. 24, pp. 109–165 (1989). https://doi.org/10.1016/S0079-7421(08)60536-8
Mehta, S.V., Patil, D., Chandar, S., Strubell, E.: An empirical investigation of the role of pre-training in lifelong learning (2021). https://doi.org/10.48550/ARXIV.2112.09153. https://arxiv.org/abs/2112.09153
Michieli, U., Zanuttigh, P.: Incremental learning techniques for semantic segmentation. In: Proceedings - 2019 International Conference on Computer Vision Workshop, ICCVW 2019, pp. 3205–3212 (2019). https://doi.org/10.1109/ICCVW.2019.00400. http://arxiv.org/abs/1907.13372
Michieli, U., Zanuttigh, P.: Continual semantic segmentation via repulsion-attraction of sparse and disentangled latent representations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1114–1124 (2021)
Mirzadeh, S.I., Farajtabar, M., Gorur, D., Pascanu, R., Ghasemzadeh, H.: Linear mode connectivity in multitask and continual learning. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=Fmg_fQYUejf
Neyshabur, B., Sedghi, H., Zhang, C.: What is being transferred in transfer learning? In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 512–523. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper/2020/file/0607f4c705595b911a4f3e7a127b44e0-Paper.pdf
Nguyen, C.V., Achille, A., Lam, M., Hassner, T., Mahadevan, V., Soatto, S.: Toward Understanding Catastrophic Forgetting in Continual Learning (2019). http://arxiv.org/abs/1908.01091
Ramasesh, V.V., Dyer, E., Raghu, M.: Anatomy of catastrophic forgetting: hidden representations and task semantics. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=LhY8QdUGSuw
Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: incremental classifier and representation learning. In: CVPR (2017)
Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T., Wayne, G.: Experience replay for continual learning. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019). https://proceedings.neurips.cc/paper/2019/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf
Romera, E., Álvarez, J.M., Bergasa, L.M., Arroyo, R.: ERFNet: efficient residual factorized convnet for real-time semantic segmentation. IEEE Trans. Intell. Transp. Syst. 19(1), 263–272 (2018). https://doi.org/10.1109/TITS.2017.2750080
Ronneberger, O., et al.: U-net: convolutional networks for biomedical image segmentation (2015). https://doi.org/10.48550/ARXIV.1505.04597. https://arxiv.org/abs/1505.04597
Salimans, T., Kingma, D.P.: Weight normalization: a simple reparameterization to accelerate training of deep neural networks. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29. Curran Associates, Inc. (2016). https://proceedings.neurips.cc/paper/2016/file/ed265bc903a5a097f61d3ec064d96d2e-Paper.pdf
Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative replay. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Tasar, O., Tarabalka, Y., Alliez, P.: Incremental learning for semantic segmentation of large-scale remote sensing data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 12(9), 3524–3537 (2019). https://doi.org/10.1109/JSTARS.2019.2925416
van de Ven, G.M., Siegelmann, H.T., Tolias, A.S.: Brain-inspired replay for continual learning with artificial neural networks. Nat. Commun. 11(1), 4069 (2020). https://doi.org/10.1038/s41467-020-17866-2
Yu, L., Liu, X., van de Weijer, J.: Self-training for class-incremental semantic segmentation. IEEE Trans. Neural Netw. Learn. Syst. 1–12 (2022). https://doi.org/10.1109/TNNLS.2022.3155746
Zenke, F., Poole, B., Ganguli, S.: Continual learning through synaptic intelligence. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 3987–3995. PMLR, International Convention Centre, Sydney, Australia (2017). http://proceedings.mlr.press/v70/zenke17a.html
Acknowledgments
The research leading to these results is funded by the German Federal Ministry for Economic Affairs and Climate Action within the project “KI Delta Learning” (Förderkennzeichen 19A19013T). The authors would like to thank the consortium for the successful cooperation.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kalb, T., Beyerer, J. (2023). Causes of Catastrophic Forgetting in Class-Incremental Semantic Segmentation. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13847. Springer, Cham. https://doi.org/10.1007/978-3-031-26293-7_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-26293-7_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-26292-0
Online ISBN: 978-3-031-26293-7
eBook Packages: Computer ScienceComputer Science (R0)