Abstract
A growing body of interdisciplinary NeuraSearch research in the Information Retrieval (IR) domain, built on the investigations evaluating searchers’ neurophysiological activity captured during the information search interactions, advances the understanding of the searchers’ cognitive context. Regarding the searchers’ information needs, the cognitive context represents the surroundings of a knowledge anomaly perceived in their state of knowledge. Memory retrieval is a fundamental mechanism that drives the users’ informativeness about their knowledge and knowledge gaps. Moreover, the confidence perceptions manifest the quality and attribute of the users’ memories and could be, thus, used as a sign of the quality of memories aiding the user to appraise their knowledge abilities. We used the methodology of NeuraSearch to reduce the cognitive burden commonly in traditional IR scenarios posed to the users to understand and interpret their subjective perceptions and feelings. We investigated the patterns of spatio-temporal brain activity (captured by EEG) in 24 neurologically-healthy volunteers engaged in textual general knowledge Question Answering (Q/A) Task. We looked for i) the evidence of functional processes leading to descriptive (factual) knowledge memory retrieval and ii) their interaction effects incorporating retrospective confidence judgments. Our investigation raises further questions informing research in IR and the area of user information seeking.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The details of the procedure are due to page limit omitted.
- 2.
- 3.
- 4.
A solution for multiple comparison problems and does not depend on multiple comparisons correction or Gaussian assumptions about the probability distribution of the data.
References
Andolina, S., et al.: Investigating proactive search support in conversations. In: Proceedings of the 2018 Designing Interactive Systems Conference, DIS 2018, pp. 1295–1307. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3196709.3196734
Arguello, J., Ferguson, A., Fine, E., Mitra, B., Zamani, H., Diaz, F.: Tip of the tongue known-item retrieval: a case study in movie identification. In: Proceedings of the 2021 Conference on Human Information Interaction and Retrieval, CHIIR 2021, pp. 5–14. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3406522.3446021
Bauer, E., Wilson, K., MacNamara, A.: Cognitive and affective psychophysiology (2020). https://doi.org/10.1016/B978-0-12-818697-8.00013-3
Bauer, P., Jackson, F.: Semantic elaboration: ERPs reveal rapid transition from novel to known. J. Exp. Psychol. Learn. Mem. Cogn. 41, 271 (2014). https://doi.org/10.1037/a0037405
Belabbes, M., Ruthven, I., Moshfeghi, Y., Pennington, D.: Information overload: a concept analysis. J. Doc. 79, 144–159 (2022)
Belkin, N., Oddy, R., Brooks, H.: ASK for information retrieval: part I. Background and theory. J. Doc. 38, 61–71 (1982). https://doi.org/10.1108/eb026722
Bigdely-Shamlo, N., Mullen, T., Kothe, C., Su, K.M., Robbins, K.A.: The prep pipeline: standardized preprocessing for large-scale EEG analysis. Front. Neuroinform. 9, 16 (2015). https://doi.org/10.3389/fninf.2015.00016
Brainerd, C., Reyna, V.: The Science of False Memory. Oxford University Press, Oxford (2005)
Chua, E.F., Ahmed, R., Garcia, S.M.: Effects of HD-tDCS on memory and metamemory for general knowledge questions that vary by difficulty. Brain Stimul. 10(2), 231–241 (2017). https://doi.org/10.1016/j.brs.2016.10.013
Cole, C.: A theory of information need for information retrieval that connects information to knowledge. Information Today Inc. (2012)
Cooper, W.: A definition of relevance for information retrieval. Inf. Storage Retrieval 7(1), 19–37 (1971). https://doi.org/10.1016/0020-0271(71)90024-6, https://www.sciencedirect.com/science/article/pii/0020027171900246
Diana, R., Ranganath, C.: Recollection, familiarity and memory strength: confusion about confounds. Trends Cogn. Sci. 15, 337–8 (2011). https://doi.org/10.1016/j.tics.2011.06.001
Diana, R.A., Vilberg, K.L., Reder, L.M.: Identifying the ERP correlate of a recognition memory search attempt. Cogn. Brain Res. 24(3), 674–684 (2005). https://doi.org/10.1016/j.cogbrainres.2005.04.001
Dien, J.: Issues in the application of the average reference: review, critiques, and recommendations. Behav. Res. Methods 30, 34–43 (1998). https://doi.org/10.3758/BF03209414
Dien, J., Michelson, C., Franklin, M.: Separating the visual sentence n400 effect from the p400 sequential expectancy effect: cognitive and neuroanatomical implications. Brain Res. 1355, 126–40 (2010). https://doi.org/10.1016/j.brainres.2010.07.099
Dimigen, O., Sommer, W., Hohlfeld, A., Jacobs, A., Kliegl, R.: Coregistration of eye movements and EEG in natural reading: analyses and review. J. Exp. Psychol. Gener. 140, 552–72 (2011). https://doi.org/10.1037/a0023885
Ditman, T., Holcomb, P.J., Kuperberg, G.R.: An investigation of concurrent ERP and self-paced reading methodologies. Psychophysiology 44(6), 927–935 (2007). https://doi.org/10.1111/j.1469-8986.2007.00593.x
Eugster, M.J., et al.: Natural brain-information interfaces: Recommending information by relevance inferred from human brain signals. Sci. Rep. (2016). https://doi.org/10.1038/srep38580
Franke, N., Radach, R., Jacobs, A., Hofmann, M.: No one way ticket from orthography to semantics in recognition memory: N400 and p200 effects of associations. Brain Res. 1639, 88–98 (2016). https://doi.org/10.1016/j.brainres.2016.02.029
Gould, S.J., Cox, A.L., Brumby, D.P.: Task lockouts induce crowdworkers to switch to other activities. In: Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems, CHI EA 2015, pp. 1785–1790. Association for Computing Machinery, New York (2015). https://doi.org/10.1145/2702613.2732709
Guo, C., Duan, L., Li, W., Paller, K.A.: Distinguishing source memory and item memory: brain potentials at encoding and retrieval. Brain Res. 1118, 142–154 (2006)
Hagoort, P.: Interplay between syntax and semantics during sentence comprehension: ERP effects of combining syntactic and semantic violations. J. Cogn. Neurosci. 15(6), 883–899 (2003). https://doi.org/10.1162/089892903322370807
Hillyard, S., Hink, R., Schwent, V., Picton, T.: Electrical signs of selective attention in the human brain. Science (New York, N.Y.) 182, 177–80 (1973). https://doi.org/10.1126/science.182.4108.177
Ingwersen, P.: Psychological aspects of information retrieval. Soc. Sci. Inf. Stud. 4(2), 83–95 (1984). https://doi.org/10.1016/0143-6236(84)90068-1. Special Issue Seminar on the Psychological Aspects of Information Searching
Ingwersen, P.: Cognitive perspectives of information retrieval interaction: Elements of a cognitive IR theory. J. Doc. 52, 3–50 (1996). https://doi.org/10.1108/eb026960
Ingwersen, P., Järvelin, K.: The Turn: Integration of Information Seeking and Retrieval in Context. Springer, Germany (2005). https://doi.org/10.1007/1-4020-3851-8
Kangassalo, L., Spapé, M., Jacucci, G., Ruotsalo, T.: Why do users issue good queries?: neural correlates of term specificity. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2019, pp. 375–384. ACM, Association for Computing Machinery, USA (2019). https://doi.org/10.1145/3331184.3331243
Kappenman, E., Luck, S.: Best practices for event-related potential research in clinical populations. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 1, 110–115 (2015). https://doi.org/10.1016/j.bpsc.2015.11.007
Kuhlthau, C.C.: Inside the search process: information seeking from the user’s perspective. J. Am. Soc. Inf. Sci. 42(5), 361–371 (1991)
Luck, S.: An Introduction to the Event-Related Potential Technique (2005)
Minsky, M.: A Framework for Representing Knowledge. MIT-AI Laboratory Memo (306) (1974)
Moshfeghi, Y.: NeuraSearch: neuroscience and information retrieval. In: Alonso, O., Marchesin, S., Najork, M., Silvello, G. (eds.) Proceedings of the Second International Conference on Design of Experimental Search & Information REtrieval Systems, Padova, Italy, 15–18 September 2021. CEUR Workshop Proceedings, vol. 2950, pp. 193–194. CEUR-WS.org (2021). https://ceur-ws.org/Vol-2950/paper-27.pdf
Moshfeghi, Y., Pollick, F.: Neuropsychological model of the realization of information need. J. Assoc. Inf. Sci. Technol. 70, 954–967 (2019). https://doi.org/10.1002/asi.24242
Moshfeghi, Y., Triantafillou, P., Pollick, F.E.: Understanding information need. In: Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval - SIGIR 2016 (2016). https://doi.org/10.1145/2911451.2911534
Mueller, V., Brehmer, Y., von Oertzen, T., Li, S.C., Lindenberger, U.: Electrophysiological correlates of selective attention: a lifespan comparison. BMC Neurosci. 9, 18 (2008). https://doi.org/10.1186/1471-2202-9-18
Pinkosova, Z., McGeown, W.J., Moshfeghi, Y.: The cortical activity of graded relevance. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2020, pp. 299–308. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3397271.3401106
Risko, E.F., Ferguson, A.M., McLean, D.: On retrieving information from external knowledge stores: feeling-of-findability, feeling-of-knowing and internet search. Comput. Hum. Behav. 65(C), 534–543 (2016). https://doi.org/10.1016/j.chb.2016.08.046
Savolainen, R.: Information need as trigger and driver of information seeking: a conceptual analysis. Aslib J. Inf. Manag. 69(1), 2–21 (2017). https://doi.org/10.1108/AJIM-08-2016-0139
Squire, L.R., Zola, S.M.: Structure and function of declarative and nondeclarative memory systems. Proc. Natl. Acad. Sci. 93(24), 13515–13522 (1996). https://doi.org/10.1073/pnas.93.24.13515
Stróżak, P., Bird, C., Corby, K., Frishkoff, G., Curran, T.: Fn400 and LPC memory effects for concrete and abstract words. Psychophysiology 53, 669–1678 (2016). https://doi.org/10.1111/psyp.12730
Taylor, R.S.: Question-negotiation and information seeking in libraries. Coll. Res. Libr. 29(3), 178–194 (1968). https://doi.org/10.5860/crl_29_03_178
Voss, J.L., Paller, K.A.: pp. 81–98. No. September 2016, 3rd edn. Elsevier (2016). https://doi.org/10.1016/B978-0-12-809324-5.21070-5
Wilson, T.: On user studies and information needs. J. Doc. 37(1), 3–15 (1981). https://doi.org/10.1108/eb026702
Wynn, S.C., Daselaar, S.M., Kessels, R.P., Schutter, D.J.: The electrophysiology of subjectively perceived memory confidence in relation to recollection and familiarity. Brain Cogn. 130, 20–27 (2019). https://doi.org/10.1016/j.bandc.2018.07.003
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Michalkova, D., Rodriguez, M.P., Moshfeghi, Y. (2023). Confidence as Part of Searcher’s Cognitive Context. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2022. Lecture Notes in Computer Science, vol 13811. Springer, Cham. https://doi.org/10.1007/978-3-031-25891-6_39
Download citation
DOI: https://doi.org/10.1007/978-3-031-25891-6_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25890-9
Online ISBN: 978-3-031-25891-6
eBook Packages: Computer ScienceComputer Science (R0)