Surrogate Modeling for Stochastic Assessment of Engineering Structures | SpringerLink
Skip to main content

Surrogate Modeling for Stochastic Assessment of Engineering Structures

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2022)

Abstract

In many engineering problems, the response function such as the strain or stress field of the structure, its load-bearing capacity, deflection, etc., comes from a finite element method discretization and is therefore very expensive to evaluate. For this reason, methods that replace the original computationally expensive (high-fidelity) model with a simpler (low-fidelity) model that is fast to evaluate are desirable. This paper is focused on the comparison of two surrogate modeling techniques and their potential for stochastic analysis of engineering structures; polynomial chaos expansion and artificial neural network are compared in two typical engineering applications. The first example represents a typical engineering problem with a known analytical solution, the maximum deflection of a fixed beam loaded with a single force. The second example represents a real-world implicitly defined and computationally demanding engineering problem, an existing bridge made of post-tensioned concrete girders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Borgonovo, E., Plischke, E.: Sensitivity analysis: a review of recent advances. Eur. J. Oper. Res. 248, 869–887 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Blatman, G., Sudret, B.: An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Probab. Eng. Mech. 25(2), 183–197 (2010)

    Article  Google Scholar 

  • Blatman, G., Sudret, B.: Adaptive sparse polynomial chaos expansion based on least angle regression. J. Comput. Phys. 230(6), 2345–2367 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Bourinet, J., Deheeger, F., Lemaire, M.: Assessing small failure probabilities by combined subset simulation and support vector machines. Struct. Saf. 33(6), 343–353 (2011)

    Article  Google Scholar 

  • Červenka, J., Papanikolaou, V.K.: Three dimensional combined fracture-plastic material model for concrete. Int. J. Plast. 24(12), 2192–2220 (2008)

    Article  MATH  Google Scholar 

  • Echard, B., Gayton, N., Lemaire, M., Relun, N.: A combined importance sampling and kriging reliability method for small failure probabilities with time-demanding numerical models. Reliab. Eng. Syst. Saf. 111, 232–240 (2013)

    Article  Google Scholar 

  • EN 1992-1-1. Eurocode 2: Design of concrete structures – Part 1-1: General rules and rules for buildings, National Annex A. Prague, Czech Republic (2021)

    Google Scholar 

  • Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: a Spectral Approach. Springer, Berlin, Heidelberg (1991). https://doi.org/10.1007/978-1-4612-3094-6

  • Hurtado, J.E.: An examination of methods for approximating implicit limit state functions from the viewpoint of statistical learning theory. Struct. Saf. 26(3), 271–293 (2004)

    Article  Google Scholar 

  • Iman, R.L., Conover, W.J.: Small sample sensitivity analysis techniques for computer models with an application to risk assessment. Commun. Stat. Theory Methods 9(17), 1749–1842 (1980)

    Google Scholar 

  • JCSS Probabilistic Model Code. Joint Committee on Structural Safety (2001). www.jcss-lc.org/jcss-probabilistic-model-code/

  • Kleijnen, J.P.C.: Sensitivity analysis of simulation models: an overview. Procedia Soc. Behav. Sci. 2, 7585–7586 (2010)

    Article  Google Scholar 

  • Koehler, J.R., Owen, A.B.: Computer experiments. Handb. Stat. 13, 261–308 (1996)

    Google Scholar 

  • Kubat, M.: An Introduction to Machine Learning. Springer International Publishing, Switzerland, Cham (2015). https://doi.org/10.1007/978-3-319-20010-1

  • Lehký, D., Šomodíková, M.: Reliability calculation of time-consuming problems using a small-sample artificial neural network-based response surface method. Neural Comput. Appl. 28, 1249–1263 (2017)

    Google Scholar 

  • Lehký, D., Slowik, O., Novák, D.: Reliability-based design: artificial neural networks and double-loop reliability-based optimization approaches. Adv. Eng. Softw. 117, 123–135 (2018)

    Article  Google Scholar 

  • Lehký, D., Šomodíková, M., Lipowczan, M.: An application of the inverse response surface method for the reliability-based design of structures. Neural Computing and Applications (2022). in print

    Google Scholar 

  • McKay, M.D., Conover, W.J., Beckman, R.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  • Novák, D., Teplý, B., Shiraishi, N.: Sensitivity analysis of structures: a review. In: International Conference CIVIL COMP 1993, pp. 201–207. Edinburgh, Scotland (1993)

    Google Scholar 

  • Novák, D., Vořechovský, M., Teplý, B.: FReET: software for the statistical and reliability analysis of engineering problems and FReET-D: degradation module. Adv. Eng. Softw. 72, 179–192 (2014)

    Article  Google Scholar 

  • Novák, L.: On distribution-based global sensitivity analysis by polynomial chaos expansion. Comput. Struct. 267, 106808 (2022)

    Article  Google Scholar 

  • Novák, L., Novák, D.: Polynomial chaos expansion for surrogate modelling: theory and software. Beton-und Stahlbetonbau 113, 27–32 (2018)

    Article  Google Scholar 

  • Novák, L., Vořechovský, M., Sadílek, V., Shields, M.D.: Variance-based adaptive sequential sampling for polynomial chaos expansion. Comput. Methods Appl. Mech. Eng. 386, 114105 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Pan, L., Novák, L., Lehký, D., Novák, D., Cao, M.: Neural network ensemble-based sensitivity analysis in structural engineering: Comparison of selected methods and the influence of statistical correlation. Comput. Struct. 242, 106376 (2021)

    Article  Google Scholar 

  • Slowik, O., Lehký, D., Novák, D.: Reliability-based optimization of a prestressed concrete roof girder using a surrogate model and the double-loop approach. Struct. Concr. 22, 2184–2201 (2021)

    Article  Google Scholar 

  • Sobol, I.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55, 271–280 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Soize, C., Ghanem, R.: Physical systems with random uncertainties: chaos representations with arbitrary probability measure. J. Sci. Comput. 26, 395–410 (2004)

    MathSciNet  MATH  Google Scholar 

  • Stein, M.: Large sample properties of simulations using Latin hypercube sampling. Technimetrics 29(2), 143–151 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93(7), 964–979 (2008)

    Article  Google Scholar 

  • Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Stat. 32(2), 407–499 (2004)

    Google Scholar 

  • Vořechovský, M.: Correlation control in small sample Monte Carlo type simulations II: analysis of estimation formulas, random correlation and perfect uncorrelatedness. Probab. Eng. Mech. 29, 105–120 (2012)

    Article  Google Scholar 

  • Xiu, D., Karniadakis, E.G.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This work was supported by the project No. 22-00774S, awarded by the Czech Science Foundation (GACR).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lehký, D., Novák, L., Novák, D. (2023). Surrogate Modeling for Stochastic Assessment of Engineering Structures. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2022. Lecture Notes in Computer Science, vol 13811. Springer, Cham. https://doi.org/10.1007/978-3-031-25891-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25891-6_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25890-9

  • Online ISBN: 978-3-031-25891-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics