Hierarchical Decentralized Deep Reinforcement Learning Architecture for a Simulated Four-Legged Agent | SpringerLink
Skip to main content

Hierarchical Decentralized Deep Reinforcement Learning Architecture for a Simulated Four-Legged Agent

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2022)

Abstract

Legged locomotion is widespread in nature and has inspired the design of current robots. The controller of these legged robots is often realized as one centralized instance. However, in nature, control of movement happens in a hierarchical and decentralized fashion. Introducing these biological design principles into robotic control systems has motivated this work. We tackle the question whether decentralized and hierarchical control is beneficial for legged robots and present a novel decentral, hierarchical architecture to control a simulated legged agent. Three different tasks varying in complexity are designed to benchmark five architectures (centralized, decentralized, hierarchical and two different combinations of hierarchical decentralized architectures). The results demonstrate that decentralizing the different levels of the hierarchical architectures facilitates learning of the agent, ensures more energy efficient movements as well as robustness towards new unseen environments. Furthermore, this comparison sheds light on the importance of modularity in hierarchical architectures to solve complex goal-directed tasks. We provide an open-source code implementation of our architecture (https://github.com/wzaielamri/hddrl).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Azayev, T., Zimmerman, K.: Blind hexapod locomotion in complex terrain with gait adaptation using deep reinforcement learning and classification. J. Intell. Rob. Syst. 99, 659–671 (2020)

    Article  Google Scholar 

  2. Duan, Y., Chen, X., Houthooft, R., Schulman, J., Abbeel, P.: Benchmarking deep reinforcement learning for continuous control. In: Proc. of the 33rd International Conference on Machine Learning. ICML 2016, vol. 48, pp. 1329–1338. JMLR (2016)

    Google Scholar 

  3. Frans, K., Ho, J., Chen, X., Abbeel, P., Schulman, J.: Meta Learning Shared Hierarchies. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=SyX0IeWAW

  4. Heess, N., Wayne, G., Tassa, Y., Lillicrap, T., Riedmiller, M., Silver, D.: Learning and transfer of modulated locomotor controllers. arXiv preprint arXiv:1610.05182 (2016)

  5. Huang, W., Mordatch, I., Pathak, D.: One policy to control them all: shared modular policies for agent-agnostic control. In: III, H.D., Singh, A. (eds.) Proceedings of the 37th International Conference on Machine Learning, vol. 119, pp. 4455–4464 (2020)

    Google Scholar 

  6. Hutter, M., Gehring, C., Jud, D., Lauber, A., Bellicoso, C.D.: ANYmal - a highly mobile and dynamic quadrupedal robot. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 38–44 (2016)

    Google Scholar 

  7. Konda, V., Tsitsiklis, J.: Actor-critic algorithms. In: Solla, S., Leen, T., Müller, K. (eds.) Advances in Neural Information Processing Systems, vol. 12. MIT Press (1999)

    Google Scholar 

  8. Kulkarni, T.D., Narasimhan, K.R., Saeedi, A., Tenenbaum, J.B.: Hierarchical deep reinforcement learning: integrating temporal abstraction and intrinsic motivation. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, pp. 3682–3690. Curran Associates Inc., Red Hook, NY, USA (2016)

    Google Scholar 

  9. Li, T., Lambert, N., Calandra, R., Meier, F., Rai, A.: Learning generalizable locomotion skills with hierarchical reinforcement learning. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 413–419 (2020)

    Google Scholar 

  10. Liang, E., et al.: Ray RLlib: A composable and scalable reinforcement learning library. CoRR abs/1712.09381 (2017), http://arxiv.org/abs/1712.09381

  11. Merel, J., Botvinick, M., Wayne, G.: Hierarchical motor control in mammals and machines. Nat. Commun. 10(1), 1–12 (2019)

    Article  Google Scholar 

  12. Schilling, M., Hoinville, T., Schmitz, J., Cruse, H.: Walknet, a bio-inspired controller for hexapod walking. Biol. Cybern. 107(4), 397–419 (2013)

    Article  MathSciNet  Google Scholar 

  13. Schilling, M., Konen, K., Ohl, F.W., Korthals, T.: Decentralized deep reinforcement learning for a distributed and adaptive locomotion controller of a hexapod robot. In: Proceedings of IROS, pp. 5335–5342 (2020)

    Google Scholar 

  14. Schilling, M., Melnik, A.: An approach to hierarchical deep reinforcement learning for a decentralized walking control architecture. In: Samsonovich, A.V. (ed.) BICA 2018. AISC, vol. 848, pp. 272–282. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-99316-4_36

    Chapter  Google Scholar 

  15. Schilling, M., Melnik, A., Ohl, F.W., Ritter, H.J., Hammer, B.: Decentralized control and local information for robust and adaptive decentralized deep reinforcement learning. Neural Netw. 144, 699–725 (2021)

    Article  Google Scholar 

  16. Schneider, A., Paskarbeit, J., Schilling, M., Schmitz, J.: HECTOR, a bio-inspired and compliant hexapod robot. In: Biomimetic and Biohybrid Systems, vol. 8608, pp. 427–429 (2014)

    Google Scholar 

  17. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint (2017)

    Google Scholar 

  18. Tassa, Y., et al.: Deepmind control suite. CoRR abs/1801.00690 (2018)

    Google Scholar 

  19. Todorov, E., Erez, T., Tassa, Y.: MuJoCo: a physics engine for model-based control. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wadhah Zai El Amri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amri, W.Z.E., Hermes, L., Schilling, M. (2023). Hierarchical Decentralized Deep Reinforcement Learning Architecture for a Simulated Four-Legged Agent. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2022. Lecture Notes in Computer Science, vol 13811. Springer, Cham. https://doi.org/10.1007/978-3-031-25891-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25891-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25890-9

  • Online ISBN: 978-3-031-25891-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics