Characterization of Temperature Distribution in Microfluidic Chip for DNA Amplification | SpringerLink
Skip to main content

Characterization of Temperature Distribution in Microfluidic Chip for DNA Amplification

  • Conference paper
  • First Online:
Sensors and Microsystems (AISEM 2022)

Abstract

This work focuses on the temperature monitoring inside a polydimethylsiloxane microfluidic chip, suitable for DNA amplification. In order to achieve this aim, the microfluidic chip has been thermally coupled with a lab-on-chip integrating, on a single glass substrate, temperature sensors and thin film heater. The wells of the chip have been filled with thermochromic liquid crystals, that change their optical properties at a precise transition temperature (TT). Experiments have been performed cycling the chip temperatures between 90 ℃ and 50 ℃, two temperatures very close to the annealing and denaturation steps of the standard Polymerase Chain Reaction (PCR), utilized for DNA amplification. Results state that the temperature distribution inside the wells follows values and spatial uniformity required by the PCR cycles, guaranteeing an effective heat transfer from the thin film resistor to the microfluidic chip. Gel electrophoresis of amplified samples showed the presence of the amplifications and thus the successful implementation of the PCR in our lab-on-chip.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 20591
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 25739
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 25739
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Manz, A., et al.: Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: capillary electrophoresis on a chip. J. Chromatogr. A 593(1–2), 253–258 (1992)

    Article  Google Scholar 

  2. Whitesides, G.M.: The origins and the future of microfluidics. Nature 442, 368–373 (2006)

    Article  Google Scholar 

  3. Wu, J., Dong, M., Rigatto, C., Liu, Y., Lin, F.: Lab-on-chip technology for chronic disease diagnosis. NPJ Digit. Med. 1(1), 1–11 (2018)

    Article  Google Scholar 

  4. Nightingale, A.M., Beaton, A.D., Mowlem, M.C.: Trends in microfluidic systems for in situ chemical analysis of natural waters. Sens. Actuators B: Chem. 221, 1398–1405 (2015)

    Article  Google Scholar 

  5. Conde, J.P., et al.: Lab-on-chip systems for integrated bioanalyses. Essays Biochem. 60(1), 121–131 (2016)

    Article  Google Scholar 

  6. Nandimandalam, M., et al.: Split aptamers immobilized on polymer brushes integrated in a lab-on-chip system based on an array of amorphous silicon photosensors: a novel sensor assay. Materials 14(23), 7210 (2021)

    Article  Google Scholar 

  7. Caputo, D., de Cesare, G., Lovecchio, N., Scipinotti, R., Nascetti, A.: Electrowetting-on-dielectric system based on polydimethylsiloxane. In: 5th IEEE International Workshop on Advances in Sensors and Interfaces IWASI, pp. 99–103. IEEE (2013)

    Google Scholar 

  8. Salieb-Beugelaar, G.B., Simone, G., Arora, A., Philippi, A., Manz, A.: Latest developments in microfluidic cell biology and analysis systems. Anal. Chem. 82(12), 4848–4864 (2010)

    Article  Google Scholar 

  9. Petralia, S., Verardo, R., Klaric, E., Cavallaro, S., Alessi, E., Schneider, C.: In-Check system: a highly integrated silicon Lab-on-Chip for sample preparation, PCR amplification and microarray detection of nucleic acids directly from biological samples. Sens. Actuators B: Chem. 187, 99–105 (2013)

    Article  Google Scholar 

  10. Hung, T.Q., Chin, W.H., Sun, Y., Wolff, A., Bang, D.D.: A novel lab-on-chip platform with integrated solid phase PCR and Supercritical Angle Fluorescence (SAF) microlens array for highly sensitive and multiplexed pathogen detection. Biosens. Bioelectron. 90, 217–223 (2017)

    Article  Google Scholar 

  11. Tymm, C., Zhou, J., Tadimety, A., Burklund, A., Zhang, J.X.: Scalable COVID-19 detection enabled by lab-on-chip biosensors. Cell. Mol. Bioeng. 13(4), 313–329 (2020)

    Article  Google Scholar 

  12. Sun, K., Yamaguchi, A., Ishida, Y., Matsuo, S., Misawa, H.: A heater-integrated transparent microchannel chip for continuous-flow PCR. Sens. Actuators B: Chem. 84(2–3), 283–289 (2002)

    Article  Google Scholar 

  13. Chen, P.C., Nikitopoulos, D.E., Soper, S.A., Murphy, M.C.: Temperature distribution effects on micro-CFPCR performance. Biomed. Microdev. 10(2), 141–152 (2008)

    Article  Google Scholar 

  14. Xiang, Q., Xu, B., Fu, R., Li, D.: Real time PCR on disposable PDMS chip with a miniaturized thermal cycler. Biomed. Microdev. 7(4), 273–279 (2005)

    Article  Google Scholar 

  15. Norian, H., Field, R.M., Kymissis, I., Shepard, K.L.: An integrated CMOS quantitative-polymerase-chain-reaction lab-on-chip for point-of-care diagnostics. Lab Chip 14(20), 4076–4084 (2014)

    Article  Google Scholar 

  16. Ross, D., Gaitan, M., Locascio, L.E.: Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye. Anal. Chem. 73(17), 4117–4123 (2001)

    Article  Google Scholar 

  17. Natrajan, V.K., Christensen, K.T.: Two-color laser-induced fluorescent thermometry for microfluidic systems. Meas. Sci. Technol. 20(1), 015401 (2008)

    Article  Google Scholar 

  18. Arık, M., Çelebi, N., Onganer, Y.: Fluorescence quenching of fluorescein with molecular oxygen in solution. J. Photochem. Photobiol. A: Chem. 170(2), 105–111 (2005)

    Article  Google Scholar 

  19. Dabiri, D.: Digital particle image thermometry/velocimetry: a review. Exp. Fluids 46(2), 191–241 (2009)

    Article  Google Scholar 

  20. Basson, M., Pottebaum, T.S.: Measuring the temperature of fluid in a micro-channel using thermochromic liquid crystals. Exp. Fluids 53(3), 803–814 (2012)

    Article  Google Scholar 

  21. Scorzoni, A., et al.: Design and experimental characterization of thin film heaters on glass substrate for Lab-on-Chip applications. Sens. Actuators A: Phys. 229, 203–210 (2015)

    Article  Google Scholar 

  22. Lovecchio, N., et al.: Integrated optoelectronic device for detection of fluorescent molecules. IEEE Trans. Biomed. Circ. Syst. 12(6), 1337–1344 (2018)

    Article  Google Scholar 

  23. Costantini, F., et al.: Integrated sensor system for DNA amplification and separation based on thin film technology. IEEE Trans. Compon. Packag. Manuf. Technol. 8(7), 1141–1148 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

Authors wish to thank Italian and Ministry of University (MUR) and Research and Ministry of Foreign Affairs and International Cooperation (MAECI) for the financial supports through the project PGR00843 “Acustofluidic DNA Diagnosis Chip (ADD-Health)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Caputo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lovecchio, N. et al. (2023). Characterization of Temperature Distribution in Microfluidic Chip for DNA Amplification. In: Di Francia, G., Di Natale, C. (eds) Sensors and Microsystems. AISEM 2022. Lecture Notes in Electrical Engineering, vol 999. Springer, Cham. https://doi.org/10.1007/978-3-031-25706-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25706-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25705-6

  • Online ISBN: 978-3-031-25706-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics