Detection of Morality in Tweets Based on the Moral Foundation Theory | SpringerLink
Skip to main content

Detection of Morality in Tweets Based on the Moral Foundation Theory

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2022)

Abstract

Moral Foundations Theory is a socio-cognitive psychological theory that constitutes a general framework aimed at explaining the origin and evolution of human moral reasoning. Due to its dyadic structure of values and their violations, it can be used as a theoretical background for discerning moral values from natural language text as it captures a user’s perspective on a specific topic. In this paper, we focus on the automatic detection of moral content in sentences or short paragraphs by means of machine learning techniques. We leverage on a corpus of tweets previously labeled as containing values or violations, according to the Moral Foundations Theory. We double evaluate the result of our work: (i) we compare the results of our model with the state of the art and (ii) we assess the proposed model in detecting the moral values with their polarity. The final outcome shows both an overall improvement in detecting moral content compared to the state of the art and adequate performances in detecting moral values with their sentiment polarity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Clifford, S., Jerit, J.: How words do the work of politics: moral foundations theory and the debate over stem cell research. J. Politics 75(3), 659–671 (2013)

    Article  Google Scholar 

  2. Collobert, R., Weston, J.: A unified architecture for natural language processing: Deep neural networks with multitask learning. In: Proceedings of the 25th International Conference on Machine Learning, pp. 160–167 (2008)

    Google Scholar 

  3. Davidson, T., Warmsley, D., Macy, M., Weber, I.: Automated hate speech detection and the problem of offensive language. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 11, pp. 512–515 (2017)

    Google Scholar 

  4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding (2019)

    Google Scholar 

  5. Floridi, L.: The Onlife Manifesto: Being Human in a Hyperconnected Era. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-04093-6

    Book  Google Scholar 

  6. Forbes, M., Hwang, J.D., Shwartz, V., Sap, M., Choi, Y.: Social chemistry 101: learning to reason about social and moral norms. arXiv preprint arXiv:2011.00620 (2020)

  7. Fulgoni, D., Carpenter, J., Ungar, L., Preoţiuc-Pietro, D.: An empirical exploration of moral foundations theory in partisan news sources. In: Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), pp. 3730–3736 (2016)

    Google Scholar 

  8. Garten, J., Boghrati, R., Hoover, J., Johnson, K.M., Dehghani, M.: Morality between the lines: detecting moral sentiment in text. In: Proceedings of IJCAI 2016 Workshop on Computational Modeling of Attitudes (2016)

    Google Scholar 

  9. Graham, J., et al.: Moral foundations theory: the pragmatic validity of moral pluralism. In: Advances in Experimental Social Psychology, vol. 47, pp. 55–130. Elsevier (2013)

    Google Scholar 

  10. Graham, J., Haidt, J., Nosek, B.A.: Liberals and conservatives rely on different sets of moral foundations. J. Pers. Social Psychol. 96(5), 1029 (2009)

    Article  Google Scholar 

  11. Graham, J., Nosek, B.A., Haidt, J.: The moral stereotypes of liberals and conservatives: exaggeration of differences across the political spectrum. PloS One 7(12), e50092 (2012)

    Article  Google Scholar 

  12. Haidt, J.: The emotional dog and its rational tail: a social intuitionist approach to moral judgment. Psychol. Rev. 108(4), 814 (2001)

    Article  Google Scholar 

  13. Haidt, J.: The righteous mind: why good people are divided by politics and religion. Vintage (2012)

    Google Scholar 

  14. Hoover, J., Portillo-Wightman, G., Yeh, L., Havaldar, S., Davani, A.M., Lin, Y., Kennedy, B., Atari, M., Kamel, Z., Mendlen, M., et al.: Moral foundations twitter corpus: a collection of 35k tweets annotated for moral sentiment. Social Psychol. Pers. Sci. 11(8), 1057–1071 (2020)

    Article  Google Scholar 

  15. Hopp, F.R., Fisher, J.T., Cornell, D., Huskey, R., Weber, R.: The extended moral foundations dictionary (emfd): development and applications of a crowd-sourced approach to extracting moral intuitions from text. Behav. Res. Methods 53(1), 232–246 (2021)

    Article  Google Scholar 

  16. Iandola, F.N., Shaw, A.E., Krishna, R., Keutzer, K.W.: SqueezeBERT: what can computer vision teach nlp about efficient neural networks? arXiv:2006.11316 (2020)

  17. Johnson, K., Goldwasser, D.: Classification of moral foundations in microblog political discourse. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, vol. 1: Long Papers, pp. 720–730 (2018)

    Google Scholar 

  18. Kennedy, B., et al.: Moral concerns are differentially observable in language. Cognition 212, 104696 (2021)

    Article  Google Scholar 

  19. Kwak, H., An, J., Jing, E., Ahn, Y.Y.: Frameaxis: characterizing microframe bias and intensity with word embedding. PeerJ Comput. Sci. 7, e644 (2021)

    Article  Google Scholar 

  20. Luong, M.T., Le, Q.V., Sutskever, I., Vinyals, O., Kaiser, L.: Multi-task sequence to sequence learning. arXiv preprint arXiv:1511.06114 (2015)

  21. Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M., Gao, J.: Deep learning-based text classification: a comprehensive review. ACM Comput. Surv. (CSUR) 54(3), 1–40 (2021)

    Article  Google Scholar 

  22. Mohammed, A.H., Ali, A.H.: Survey of bert (bidirectional encoder representation transformer) types. In: Journal of Physics: Conference Series, vol. 1963, p. 012173. IOP Publishing (2021)

    Google Scholar 

  23. Mokhberian, N., Abeliuk, A., Cummings, P., Lerman, K.: Moral framing and ideological bias of news. In: Aref, S., Bontcheva, K., Braghieri, M., Dignum, F., Giannotti, F., Grisolia, F., Pedreschi, D. (eds.) SocInfo 2020. LNCS, vol. 12467, pp. 206–219. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60975-7_16

    Chapter  Google Scholar 

  24. Pacheco, M.L., Goldwasser, D.: Modeling content and context with deep relational learning. Trans. Assoc. Comput. Linguist. 9, 100–119 (2021)

    Article  Google Scholar 

  25. Priniski, J.H., et al.: Mapping moral valence of tweets following the killing of george floyd. arXiv preprint arXiv:2104.09578 (2021)

  26. Roy, S., Goldwasser, D.: Analysis of nuanced stances and sentiment towards entities of us politicians through the lens of moral foundation theory. In: Proceedings of the Ninth International Workshop on Natural Language Processing for Social Media, pp. 1–13 (2021)

    Google Scholar 

  27. Young, L., Saxe, R.: When ignorance is no excuse: different roles for intent across moral domains. Cognition 120(2), 202–214 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Morteza Dehghani for supporting us in setting up the MFTC dataset and the testset for comparison. This work is supported by the H2020 projects TAILOR: Foundations of Trustworthy AI - Integrating Reasoning, Learning and Optimization – EC Grant Agreement number 952215 – and SPICE: Social Cohesion, Participation and Inclusion through Cultural Engagement – EC Grant Agreement number 870811.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luana Bulla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bulla, L., Giorgis, S.D., Gangemi, A., Marinucci, L., Mongiovì, M. (2023). Detection of Morality in Tweets Based on the Moral Foundation Theory. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2022. Lecture Notes in Computer Science, vol 13810. Springer, Cham. https://doi.org/10.1007/978-3-031-25599-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25599-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25598-4

  • Online ISBN: 978-3-031-25599-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics