Regression and Machine Learning Algorithm to Study the LOS of Patients Undergoing Hip Surgery | SpringerLink
Skip to main content

Regression and Machine Learning Algorithm to Study the LOS of Patients Undergoing Hip Surgery

  • Conference paper
  • First Online:
Biomedical and Computational Biology (BECB 2022)

Abstract

Today, fracture surgery is a key part of a hospital’s orthopaedic department and usually involves significant clinical cost implications. The evaluation of hospitalization time for subjects suffering of hip fracture assumes a key role in the last years because it can affect the postoperative course and recovery of the patient. Length of stay (LOS) is a useful tool for monitoring patients and useful for hospital administrators to assess the efficiency of the hospital. Our aim is to investigate the LOS prediction for all patients with hip fracture hospitalized in two hospitals located in Campania Region, also comparing the obtained results. Different machine learning models and data analysis methodologies have been applied on a cohort of patients hospitalized in two different hospitals, also evaluating them in terms of accuracy and error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zuckerman, J.D.: Hip fracture. N. Engl. J. Med. 334(23), 1519–1525 (1996)

    Article  CAS  PubMed  Google Scholar 

  2. Gallagher, J.C., Melton, L.J., Riggs, B.L., Bergstrath, E.: Epidemiology of fractures of the proximal femur in Rochester, Minnesota. Clin. Orthop. 150, 163–171 (1980)

    Article  Google Scholar 

  3. Baker, S.P., Harvey, A.H.: Falls in the elderly. Clin. Geriatr. Med. 1, 501–512 (1985)

    Article  CAS  PubMed  Google Scholar 

  4. Hernandez-Avila, M., Colditz, G.A., Stampfer, M.J., Rosner, B., Speizer, F.E., Willett, W.C.: Caffeine, moderate alcohol intake, and risk of fractures of the hip and forearm in middle-aged women. Am. J. Clin. Nutr. 54, 157–163 (1991)

    Article  CAS  PubMed  Google Scholar 

  5. Gates, B., Fairbairn, A., Craxford, A.D.: Broken necks of the femur in a psychogeriatric hospital. Injury 17, 383–386 (1986)

    Article  CAS  PubMed  Google Scholar 

  6. Paganini-Hill, A., Chao, A., Ross, R.K., Henderson, B.E.: Exercise and other factors in the prevention of hip fracture: the leisure world study. Epidemiology 2, 16–25 (1991)

    Article  CAS  PubMed  Google Scholar 

  7. Tomasevic-Todorovic, S., Vazic, A., Issaka, A., Hanna, F.: Comparative assessment of fracture risk among osteoporosis and osteopenia patients: a cross-sectional study. Open Access Rheumatol. Res. Rev. 10, 61–66 (2018)

    Google Scholar 

  8. Axelsson, K.F., Wallander, M., Johansson, H., Lundh, D., Lorentzon, M.: Hip fracture risk and safety with alendronate treatment in the oldest-old. J. Int. Med. 282, 546–559 (2017)

    Article  CAS  Google Scholar 

  9. Wolinsky, F.D., Fitzgerald, J.F., Stump, T.E.: The effect of hip fracture on mortality, hospitalization, and functional status: a prospective study. Am. J. Public Health 87, 398–403 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gordon, P.C.: The probability of death following a fracture of the hip. Can. Med. Assoc. J. 105, 47–51 (1971)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lamberti, A., Balato, G., Summa, P.P., Rajgopal, A., Vasdev, A., Baldini, A.: Surgical options for chronic patellar tendon rupture in total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 26(5), 1429–1435 (2016). https://doi.org/10.1007/s00167-016-4370-0

    Article  PubMed  Google Scholar 

  12. Smeraglia, F., Barrera-Ochoa, S., Mendez-Sanchez, G., Basso, M.A., Balato, G., Mir-Bullo, X.: Partial trapeziectomy and pyrocarbon interpositional arthroplasty for trapeziometacarpal osteoarthritis: minimum 8-year follow-up. J. Hand. Surg. Eur. 45(5), 472–476 (2020)

    Article  Google Scholar 

  13. Baldini, A., Balato, G., Franceschini, V.: The role of offset stems in revision knee arthroplasty. Curr. Rev. Musculoskelet. Med. 8(4), 383–389 (2015). https://doi.org/10.1007/s12178-015-9294-7

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rosa, D., et al.: How to manage a failed cartilage repair: a systematic literature review. Joints 5(2), 93–106 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  15. Farahmand, B.Y., Michaëlsson, K., Ahlbom, A., et al.: Survival after hip fracture. Osteoporos. Int. 16, 1583–1590 (2005). https://doi.org/10.1007/s00198-005-2024-z

    Article  PubMed  Google Scholar 

  16. Bergström, U., Jonsson, H., Gustafson, Y., Pettersson, U., Stenlund, H., Svensson, O.: The hip fracture incidence curve is shifting to the right. Acta Orthop. 80, 520–524 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  17. Roche, J.J., Wenn, R.T., Sahota, O., Moran, C.G.: Effect of comorbidities and postoperative complications on mortality after hip fracture in elderly people: prospective observational cohort study. BMJ 331, 1374 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Balato, G., et al.: Hip and knee section, prevention, surgical technique: proceedings of international consensus on orthopedic infections. J. Arthroplasty 34(2S), S301–S307 (2019)

    Google Scholar 

  19. Balato, G., et al.: Laboratory-based versus qualitative assessment of α-defensin in periprosthetic hip and knee infections: a systematic review and meta-analysis. Arch. Orthop. Trauma Surg. 140(3), 293–301 (2019). https://doi.org/10.1007/s00402-019-03232-5

    Article  PubMed  Google Scholar 

  20. Balato, G., et al.: Debridement and implant retention in acute hematogenous periprosthetic joint infection after knee arthroplasty: a systematic review. Orthop. Rev. (Pavia) 14(2), 33670 (2022)

    PubMed  PubMed Central  Google Scholar 

  21. Balato, G., et al.: Bacterial biofilm formation is variably inhibited by different formulations of antibiotic-loaded bone cement in vitro. Knee Surg. Sports Traumatol. Arthrosc. 27(6), 1943–1952 (2018). https://doi.org/10.1007/s00167-018-5230-x

    Article  PubMed  Google Scholar 

  22. Campion, E.W., Jette, A.M., Cleary, P.D., et al.: Hip fracture. J. Gen. Intern. Med. 2, 78–82 (1987). https://doi.org/10.1007/BF02596300

    Article  CAS  PubMed  Google Scholar 

  23. Folbert, E.C., et al.: Complications during hospitalization and risk factors in elderly patients with hip fracture following integrated orthogeriatric treatment. Arch. Orthop. Trauma Surg. 137, 507–515 (2017)

    Article  CAS  PubMed  Google Scholar 

  24. Balato, G., et al.: Prevention and treatment of peri-prosthetic joint infection using surgical wound irrigation. J. Biol. Regul. Homeost. Agents 34(5 Suppl. 1), 17–23 (2020)

    Google Scholar 

  25. Improta, G., et al.: Management of the diabetic patient in the diagnostic care pathway. In: Jarm, T., Cvetkoska, A., Mahnič-Kalamiza, S., Miklavcic, D. (eds.) EMBEC 2020. IP, vol. 80, pp. 784–792. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-64610-3_88

    Chapter  Google Scholar 

  26. Di Laura, D., D’Angiolella, L., Mantovani, L., et al.: Efficiency measures of emergency departments: an Italian systematic literature review. BMJ Open Qual. 10, e001058 (2021). https://doi.org/10.1136/bmjoq-2020-001058

    Article  PubMed  PubMed Central  Google Scholar 

  27. Improta, G., Scala, A., Trunfio, T.A., Guizzi, G.: Application of supply chain management at drugs flow in an Italian Hospital District. J. Phys. Conf. Ser. 1828(1), (2021). https://doi.org/10.1088/1742-6596/1828/1/012081

  28. Scala, A., et al.: Regression models to study the total LOS related to valvuloplasty. Int. J. Env. Res. Public Health 19(5), 3117 (2022)

    Google Scholar 

  29. Trunfio, T.A., et al.: A comparison of different regression and classification methods for predicting the length of hospital stay after cesarean sections. In: 2021 5th International Conference on Medical and Health Informatics (2021)

    Google Scholar 

  30. Scala, A., Loperto, I., Carrano, R., Federico, S., Triassi, M., Improta, G.: Assessment of proteinuria level in nephrology patients using a machine learning approach. In: 2021 5th International Conference on Medical and Health Informatics (ICMHI 2021), New York, NY, USA, pp. 13–16. Association for Computing Machinery (2021). https://doi.org/10.1145/3472813.3472816

  31. Santini, S., et al.: Using fuzzy logic for improving clinical daily-care of β-thalassemia patients. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6. IEEE, July 2017

    Google Scholar 

  32. Improta, G., Mazzella, V., Vecchione, D., Santini, S., Triassi, M.: Fuzzy logic–based clinical decision support system for the evaluation of renal function in post-Transplant Patients. J. Eval. Clin. Pract. 26(4), 1224–1234 (2020)

    Article  PubMed  Google Scholar 

  33. Cortesi, P.A., et al.: Cost-effectiveness and budget impact of emicizumab prophylaxis in haemophilia a patients with inhibitors. Thromb. Haemost. 120(02), 216–228 (2020)

    Article  PubMed  Google Scholar 

  34. Ponsiglione, A.M., Romano, M., Amato, F.: A finite-state machine approach to study patients dropout from medical examinations. In: 2021 IEEE 6th International Forum on Research and Technology for Society and Industry (RTSI), pp. 289–294 (2021). https://doi.org/10.1109/RTSI50628.2021.9597264

  35. Converso, G, Improta, G, Mignano, M, Santillo, LC.: A simulation approach for agile production logic implementation in a hospital emergency unit. In: Fujita, H., Guizzi, G. (eds.) SoMeT 2015. CCIS, vol. 532, pp. 623–634. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22689-7_48

    Chapter  Google Scholar 

  36. Balato, M., et al.: On the necessity of a customized knee spacer in peri-prosthetic joint infection treatment: 3D numerical simulation results. J. Pers. Med. 11(10), 1039 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  37. Trunfio, T.A., Borrelli, A., Improta, G.: Is it possible to predict the length of stay of patients undergoing hip-replacement surgery? Int. J. Environ. Res. Public Health 19, 6219 (2022). https://doi.org/10.3390/ijerph19106219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Latessa, I., et al.: Implementing fast track surgery in hip and knee arthroplasty using the lean Six Sigma methodology. TQM J. 33(7), 131–147 (2021)

    Google Scholar 

  39. Karnuta, J.M., Navarro, S.M., Haeberle, H.S., Billow, D.G., Krebs, V.E., Ramkumar, P.N.: Bundled care for hip fractures: a machine-learning approach to an untenable patient-specific payment model. J. Orthop. Trauma 33(7), 324–330 (2019)

    Google Scholar 

  40. Navarro, S.M., et al.: Machine learning and primary total knee arthroplasty: patient forecasting for a patient-specific payment model. J. Arthroplasty 33, 3617–3623 (2018)

    Article  PubMed  Google Scholar 

  41. Rosa, D., Balato, G., Ciaramella, G., Soscia, E., Improta, G., Triassi, M.: Long-term clinical results and MRI changes after autologous chondrocyte implantation in the knee of young and active middle-aged patients. J. Orthop. Traumatol. 17(1), 55–62 (2016)

    Article  PubMed  Google Scholar 

  42. Ramkumar, P.N., et al.: Development and validation of a machine learning algorithm after primary total hip arthroplasty: applications to length of stay and payment models. J. Arthroplasty 34, 632–637 (2019)

    Article  PubMed  Google Scholar 

  43. Ponsiglione, A.M., Cosentino, C., Cesarelli, G., Amato, F., Romano, M.: A comprehensive review of techniques for processing and analyzing fetal heart rate signals. Sensors 21(18), 6136 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ponsiglione, A.M., Amato, F., Cozzolino, S., Russo, G., Romano, M., Improta, G.: A hybrid analytic hierarchy process and likert scale approach for the quality assessment of medical education programs. Mathematics 10(9), 1426 (2022)

    Article  Google Scholar 

  45. Ponsiglione, C., Trunfio, T.A., Bruno, F., Borrelli, A.: Regression and machine learning analysis to predict the length of stay in patients undergoing hip replacement surgery. In: 2021 International Symposium on Biomedical Engineering and Computational Biology (BECB 2021), New York, NY, USA, Article 19, pp. 1–5. Association for Computing Machinery (2021).https://doi.org/10.1145/3502060.3503616

  46. Mariconda, M., Soscia, E., Sirignano, C., Smeraglia, F., Soldati, A., Balato, G.: Long-term clinical results and MRI changes after tendon ball arthroplasty for advanced Kienbock’s disease. J. Hand. Surg. Eur. 38(5), 508–514 (2013). https://doi.org/10.1177/1753193412471183

    Article  CAS  Google Scholar 

  47. Smeraglia, F., Basso, M.A., Famiglietti, G., Cozzolino, A., Balato, G., Bernasconi, A.: Pyrocardan® interpositional arthroplasty for trapeziometacarpal osteoarthritis: a minimum four year follow-up. Int. Orthop. 46(8), 1803–1810 (2022). https://doi.org/10.1007/s00264-022-05457-3

    Article  PubMed  Google Scholar 

  48. Han, Q., Molinaro, C., Picariello, A., Sperli, G., Subrahmanian, V.S., Xiong, Y.: Generating fake documents using probabilistic logic graphs. IEEE Trans. Dependable Secure Comput. (2021). https://doi.org/10.1109/TDSC.2021.3058994

    Article  Google Scholar 

  49. Di Girolamo, R., Esposito, C., Moscato, V., Sperlí, G.: Evolutionary game theoretical on-line event detection over tweet streams. Knowl.-Based Syst. 211, 106563 (2021). https://doi.org/10.1016/j.knosys.2020.106563

    Article  Google Scholar 

  50. Guarino, F., Improta, G., Triassi, M., Castiglione, S., Cicatelli, A.: Air quality biomonitoring through Olea Europaea L.: the study case of “Land of pyres”. Chemosphere 282, 131052. https://doi.org/10.1016/j.chemosphere.2021.131052

  51. Guarino, F., Improta, G., Triassi, M., Cicatelli, A., Castiglione, S.: Effects of zinc pollution and compost amendment on the root microbiome of a metal tolerant poplar clone. Front. Microbiol. 11, 1677 (2020). https://doi.org/10.3389/fmicb.2020.01677

    Article  PubMed  PubMed Central  Google Scholar 

  52. Guarino, F., et al.: Genetic characterization, micropropagation, and potential use for arsenic phytoremediation of Dittrichia viscosa (L.) Greuter. Ecotoxicol. Environ. Saf. 148, 675–683 (2018). https://doi.org/10.1016/j.ecoenv.2017.11.010

  53. Guarino, F., Cicatelli, A., Brundu, G., Improta, G., Triassi, M., Castiglione, S.: The use of MSAP reveals epigenetic diversity of the invasive clonal populations of Arundo donax L. PLoS One 14 (2019). https://doi.org/10.1371/journal.pone.0215096

  54. De Agostini, A., et al.: Heavy metal tolerance of orchid populations growing on abandoned mine tailings: a case study in Sardinia Island (Italy). Ecotoxicol. Environ. Saf. 189, 110018 (2020). https://doi.org/10.1016/j.ecoenv.2019.110018

    Article  CAS  PubMed  Google Scholar 

  55. Moccia, E., et al.: Use of Zea mays L. in phytoremediation of trichloroethylene. Environ. Sci. Pollut. Res. 24, 11053–11060 (2017). https://doi.org/10.1007/s11356-016-7570-8

  56. La Gatta, V., Moscato, V., Pennone, M., Postiglione, M., Sperlí, G.: Music recommendation via hypergraph embedding. IEEE Trans. Neural Netw. Learn. Syst. (2022). https://doi.org/10.1109/TNNLS.2022.3146968

    Article  PubMed  Google Scholar 

  57. Esposito, C., Moscato, V., Sperlí, G.: Trustworthiness assessment of users in social reviewing systems. IEEE Trans. Syst. Man Cybern. Syst. 52(1), 151–165 (2022). https://doi.org/10.1109/TSMC.2020.3049082

    Article  Google Scholar 

  58. Sperlí, G.: A cultural heritage framework using a Deep Learning based Chatbot for supporting tourist journey. Expert Syst. Appl. 183, 115277 (2021). https://doi.org/10.1016/j.eswa.2021.115277

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Rosaria Marino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Scala, A. et al. (2023). Regression and Machine Learning Algorithm to Study the LOS of Patients Undergoing Hip Surgery. In: Wen, S., Yang, C. (eds) Biomedical and Computational Biology. BECB 2022. Lecture Notes in Computer Science(), vol 13637. Springer, Cham. https://doi.org/10.1007/978-3-031-25191-7_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25191-7_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25190-0

  • Online ISBN: 978-3-031-25191-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics