Abstract
Today, fracture surgery is a key part of a hospital’s orthopaedic department and usually involves significant clinical cost implications. The evaluation of hospitalization time for subjects suffering of hip fracture assumes a key role in the last years because it can affect the postoperative course and recovery of the patient. Length of stay (LOS) is a useful tool for monitoring patients and useful for hospital administrators to assess the efficiency of the hospital. Our aim is to investigate the LOS prediction for all patients with hip fracture hospitalized in two hospitals located in Campania Region, also comparing the obtained results. Different machine learning models and data analysis methodologies have been applied on a cohort of patients hospitalized in two different hospitals, also evaluating them in terms of accuracy and error.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zuckerman, J.D.: Hip fracture. N. Engl. J. Med. 334(23), 1519–1525 (1996)
Gallagher, J.C., Melton, L.J., Riggs, B.L., Bergstrath, E.: Epidemiology of fractures of the proximal femur in Rochester, Minnesota. Clin. Orthop. 150, 163–171 (1980)
Baker, S.P., Harvey, A.H.: Falls in the elderly. Clin. Geriatr. Med. 1, 501–512 (1985)
Hernandez-Avila, M., Colditz, G.A., Stampfer, M.J., Rosner, B., Speizer, F.E., Willett, W.C.: Caffeine, moderate alcohol intake, and risk of fractures of the hip and forearm in middle-aged women. Am. J. Clin. Nutr. 54, 157–163 (1991)
Gates, B., Fairbairn, A., Craxford, A.D.: Broken necks of the femur in a psychogeriatric hospital. Injury 17, 383–386 (1986)
Paganini-Hill, A., Chao, A., Ross, R.K., Henderson, B.E.: Exercise and other factors in the prevention of hip fracture: the leisure world study. Epidemiology 2, 16–25 (1991)
Tomasevic-Todorovic, S., Vazic, A., Issaka, A., Hanna, F.: Comparative assessment of fracture risk among osteoporosis and osteopenia patients: a cross-sectional study. Open Access Rheumatol. Res. Rev. 10, 61–66 (2018)
Axelsson, K.F., Wallander, M., Johansson, H., Lundh, D., Lorentzon, M.: Hip fracture risk and safety with alendronate treatment in the oldest-old. J. Int. Med. 282, 546–559 (2017)
Wolinsky, F.D., Fitzgerald, J.F., Stump, T.E.: The effect of hip fracture on mortality, hospitalization, and functional status: a prospective study. Am. J. Public Health 87, 398–403 (1997)
Gordon, P.C.: The probability of death following a fracture of the hip. Can. Med. Assoc. J. 105, 47–51 (1971)
Lamberti, A., Balato, G., Summa, P.P., Rajgopal, A., Vasdev, A., Baldini, A.: Surgical options for chronic patellar tendon rupture in total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 26(5), 1429–1435 (2016). https://doi.org/10.1007/s00167-016-4370-0
Smeraglia, F., Barrera-Ochoa, S., Mendez-Sanchez, G., Basso, M.A., Balato, G., Mir-Bullo, X.: Partial trapeziectomy and pyrocarbon interpositional arthroplasty for trapeziometacarpal osteoarthritis: minimum 8-year follow-up. J. Hand. Surg. Eur. 45(5), 472–476 (2020)
Baldini, A., Balato, G., Franceschini, V.: The role of offset stems in revision knee arthroplasty. Curr. Rev. Musculoskelet. Med. 8(4), 383–389 (2015). https://doi.org/10.1007/s12178-015-9294-7
Rosa, D., et al.: How to manage a failed cartilage repair: a systematic literature review. Joints 5(2), 93–106 (2017)
Farahmand, B.Y., Michaëlsson, K., Ahlbom, A., et al.: Survival after hip fracture. Osteoporos. Int. 16, 1583–1590 (2005). https://doi.org/10.1007/s00198-005-2024-z
Bergström, U., Jonsson, H., Gustafson, Y., Pettersson, U., Stenlund, H., Svensson, O.: The hip fracture incidence curve is shifting to the right. Acta Orthop. 80, 520–524 (2009)
Roche, J.J., Wenn, R.T., Sahota, O., Moran, C.G.: Effect of comorbidities and postoperative complications on mortality after hip fracture in elderly people: prospective observational cohort study. BMJ 331, 1374 (2005)
Balato, G., et al.: Hip and knee section, prevention, surgical technique: proceedings of international consensus on orthopedic infections. J. Arthroplasty 34(2S), S301–S307 (2019)
Balato, G., et al.: Laboratory-based versus qualitative assessment of α-defensin in periprosthetic hip and knee infections: a systematic review and meta-analysis. Arch. Orthop. Trauma Surg. 140(3), 293–301 (2019). https://doi.org/10.1007/s00402-019-03232-5
Balato, G., et al.: Debridement and implant retention in acute hematogenous periprosthetic joint infection after knee arthroplasty: a systematic review. Orthop. Rev. (Pavia) 14(2), 33670 (2022)
Balato, G., et al.: Bacterial biofilm formation is variably inhibited by different formulations of antibiotic-loaded bone cement in vitro. Knee Surg. Sports Traumatol. Arthrosc. 27(6), 1943–1952 (2018). https://doi.org/10.1007/s00167-018-5230-x
Campion, E.W., Jette, A.M., Cleary, P.D., et al.: Hip fracture. J. Gen. Intern. Med. 2, 78–82 (1987). https://doi.org/10.1007/BF02596300
Folbert, E.C., et al.: Complications during hospitalization and risk factors in elderly patients with hip fracture following integrated orthogeriatric treatment. Arch. Orthop. Trauma Surg. 137, 507–515 (2017)
Balato, G., et al.: Prevention and treatment of peri-prosthetic joint infection using surgical wound irrigation. J. Biol. Regul. Homeost. Agents 34(5 Suppl. 1), 17–23 (2020)
Improta, G., et al.: Management of the diabetic patient in the diagnostic care pathway. In: Jarm, T., Cvetkoska, A., Mahnič-Kalamiza, S., Miklavcic, D. (eds.) EMBEC 2020. IP, vol. 80, pp. 784–792. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-64610-3_88
Di Laura, D., D’Angiolella, L., Mantovani, L., et al.: Efficiency measures of emergency departments: an Italian systematic literature review. BMJ Open Qual. 10, e001058 (2021). https://doi.org/10.1136/bmjoq-2020-001058
Improta, G., Scala, A., Trunfio, T.A., Guizzi, G.: Application of supply chain management at drugs flow in an Italian Hospital District. J. Phys. Conf. Ser. 1828(1), (2021). https://doi.org/10.1088/1742-6596/1828/1/012081
Scala, A., et al.: Regression models to study the total LOS related to valvuloplasty. Int. J. Env. Res. Public Health 19(5), 3117 (2022)
Trunfio, T.A., et al.: A comparison of different regression and classification methods for predicting the length of hospital stay after cesarean sections. In: 2021 5th International Conference on Medical and Health Informatics (2021)
Scala, A., Loperto, I., Carrano, R., Federico, S., Triassi, M., Improta, G.: Assessment of proteinuria level in nephrology patients using a machine learning approach. In: 2021 5th International Conference on Medical and Health Informatics (ICMHI 2021), New York, NY, USA, pp. 13–16. Association for Computing Machinery (2021). https://doi.org/10.1145/3472813.3472816
Santini, S., et al.: Using fuzzy logic for improving clinical daily-care of β-thalassemia patients. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6. IEEE, July 2017
Improta, G., Mazzella, V., Vecchione, D., Santini, S., Triassi, M.: Fuzzy logic–based clinical decision support system for the evaluation of renal function in post-Transplant Patients. J. Eval. Clin. Pract. 26(4), 1224–1234 (2020)
Cortesi, P.A., et al.: Cost-effectiveness and budget impact of emicizumab prophylaxis in haemophilia a patients with inhibitors. Thromb. Haemost. 120(02), 216–228 (2020)
Ponsiglione, A.M., Romano, M., Amato, F.: A finite-state machine approach to study patients dropout from medical examinations. In: 2021 IEEE 6th International Forum on Research and Technology for Society and Industry (RTSI), pp. 289–294 (2021). https://doi.org/10.1109/RTSI50628.2021.9597264
Converso, G, Improta, G, Mignano, M, Santillo, LC.: A simulation approach for agile production logic implementation in a hospital emergency unit. In: Fujita, H., Guizzi, G. (eds.) SoMeT 2015. CCIS, vol. 532, pp. 623–634. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22689-7_48
Balato, M., et al.: On the necessity of a customized knee spacer in peri-prosthetic joint infection treatment: 3D numerical simulation results. J. Pers. Med. 11(10), 1039 (2021)
Trunfio, T.A., Borrelli, A., Improta, G.: Is it possible to predict the length of stay of patients undergoing hip-replacement surgery? Int. J. Environ. Res. Public Health 19, 6219 (2022). https://doi.org/10.3390/ijerph19106219
Latessa, I., et al.: Implementing fast track surgery in hip and knee arthroplasty using the lean Six Sigma methodology. TQM J. 33(7), 131–147 (2021)
Karnuta, J.M., Navarro, S.M., Haeberle, H.S., Billow, D.G., Krebs, V.E., Ramkumar, P.N.: Bundled care for hip fractures: a machine-learning approach to an untenable patient-specific payment model. J. Orthop. Trauma 33(7), 324–330 (2019)
Navarro, S.M., et al.: Machine learning and primary total knee arthroplasty: patient forecasting for a patient-specific payment model. J. Arthroplasty 33, 3617–3623 (2018)
Rosa, D., Balato, G., Ciaramella, G., Soscia, E., Improta, G., Triassi, M.: Long-term clinical results and MRI changes after autologous chondrocyte implantation in the knee of young and active middle-aged patients. J. Orthop. Traumatol. 17(1), 55–62 (2016)
Ramkumar, P.N., et al.: Development and validation of a machine learning algorithm after primary total hip arthroplasty: applications to length of stay and payment models. J. Arthroplasty 34, 632–637 (2019)
Ponsiglione, A.M., Cosentino, C., Cesarelli, G., Amato, F., Romano, M.: A comprehensive review of techniques for processing and analyzing fetal heart rate signals. Sensors 21(18), 6136 (2021)
Ponsiglione, A.M., Amato, F., Cozzolino, S., Russo, G., Romano, M., Improta, G.: A hybrid analytic hierarchy process and likert scale approach for the quality assessment of medical education programs. Mathematics 10(9), 1426 (2022)
Ponsiglione, C., Trunfio, T.A., Bruno, F., Borrelli, A.: Regression and machine learning analysis to predict the length of stay in patients undergoing hip replacement surgery. In: 2021 International Symposium on Biomedical Engineering and Computational Biology (BECB 2021), New York, NY, USA, Article 19, pp. 1–5. Association for Computing Machinery (2021).https://doi.org/10.1145/3502060.3503616
Mariconda, M., Soscia, E., Sirignano, C., Smeraglia, F., Soldati, A., Balato, G.: Long-term clinical results and MRI changes after tendon ball arthroplasty for advanced Kienbock’s disease. J. Hand. Surg. Eur. 38(5), 508–514 (2013). https://doi.org/10.1177/1753193412471183
Smeraglia, F., Basso, M.A., Famiglietti, G., Cozzolino, A., Balato, G., Bernasconi, A.: Pyrocardan® interpositional arthroplasty for trapeziometacarpal osteoarthritis: a minimum four year follow-up. Int. Orthop. 46(8), 1803–1810 (2022). https://doi.org/10.1007/s00264-022-05457-3
Han, Q., Molinaro, C., Picariello, A., Sperli, G., Subrahmanian, V.S., Xiong, Y.: Generating fake documents using probabilistic logic graphs. IEEE Trans. Dependable Secure Comput. (2021). https://doi.org/10.1109/TDSC.2021.3058994
Di Girolamo, R., Esposito, C., Moscato, V., Sperlí, G.: Evolutionary game theoretical on-line event detection over tweet streams. Knowl.-Based Syst. 211, 106563 (2021). https://doi.org/10.1016/j.knosys.2020.106563
Guarino, F., Improta, G., Triassi, M., Castiglione, S., Cicatelli, A.: Air quality biomonitoring through Olea Europaea L.: the study case of “Land of pyres”. Chemosphere 282, 131052. https://doi.org/10.1016/j.chemosphere.2021.131052
Guarino, F., Improta, G., Triassi, M., Cicatelli, A., Castiglione, S.: Effects of zinc pollution and compost amendment on the root microbiome of a metal tolerant poplar clone. Front. Microbiol. 11, 1677 (2020). https://doi.org/10.3389/fmicb.2020.01677
Guarino, F., et al.: Genetic characterization, micropropagation, and potential use for arsenic phytoremediation of Dittrichia viscosa (L.) Greuter. Ecotoxicol. Environ. Saf. 148, 675–683 (2018). https://doi.org/10.1016/j.ecoenv.2017.11.010
Guarino, F., Cicatelli, A., Brundu, G., Improta, G., Triassi, M., Castiglione, S.: The use of MSAP reveals epigenetic diversity of the invasive clonal populations of Arundo donax L. PLoS One 14 (2019). https://doi.org/10.1371/journal.pone.0215096
De Agostini, A., et al.: Heavy metal tolerance of orchid populations growing on abandoned mine tailings: a case study in Sardinia Island (Italy). Ecotoxicol. Environ. Saf. 189, 110018 (2020). https://doi.org/10.1016/j.ecoenv.2019.110018
Moccia, E., et al.: Use of Zea mays L. in phytoremediation of trichloroethylene. Environ. Sci. Pollut. Res. 24, 11053–11060 (2017). https://doi.org/10.1007/s11356-016-7570-8
La Gatta, V., Moscato, V., Pennone, M., Postiglione, M., Sperlí, G.: Music recommendation via hypergraph embedding. IEEE Trans. Neural Netw. Learn. Syst. (2022). https://doi.org/10.1109/TNNLS.2022.3146968
Esposito, C., Moscato, V., Sperlí, G.: Trustworthiness assessment of users in social reviewing systems. IEEE Trans. Syst. Man Cybern. Syst. 52(1), 151–165 (2022). https://doi.org/10.1109/TSMC.2020.3049082
Sperlí, G.: A cultural heritage framework using a Deep Learning based Chatbot for supporting tourist journey. Expert Syst. Appl. 183, 115277 (2021). https://doi.org/10.1016/j.eswa.2021.115277
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Scala, A. et al. (2023). Regression and Machine Learning Algorithm to Study the LOS of Patients Undergoing Hip Surgery. In: Wen, S., Yang, C. (eds) Biomedical and Computational Biology. BECB 2022. Lecture Notes in Computer Science(), vol 13637. Springer, Cham. https://doi.org/10.1007/978-3-031-25191-7_55
Download citation
DOI: https://doi.org/10.1007/978-3-031-25191-7_55
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25190-0
Online ISBN: 978-3-031-25191-7
eBook Packages: Computer ScienceComputer Science (R0)