A Comprehensive Review on Skin Disease Classification Using Convolutional Neural Network and Support Vector Machine | SpringerLink
Skip to main content

A Comprehensive Review on Skin Disease Classification Using Convolutional Neural Network and Support Vector Machine

  • Conference paper
  • First Online:
Advanced Communication and Intelligent Systems (ICACIS 2022)

Abstract

Skin illness is one of the most common medical problems that can affect people of all ages, from infants to the elderly. As the diagnosis of skin illnesses totally relies on the expertise of professionals, skin biopsy reports are laborious, time-consuming, and subject to subjectivity; thus, it is required to boost diagnostic accuracy and entail less human effort. It can be challenging to categories skin illnesses because of their eerie resemblances. This study investigates several methods for classifying skin illnesses, such as Deep Learning, Support Vector Machine (SVM) and Convolutional neural network (CNN).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cai, G., Zhu, Y., Wu, Y., Jiang, X., Ye, J., Yang, D.: A multimodal transformer to fuse images and metadata for skin disease classification. Vis. Comput. 1–13, 135 (2022)

    Google Scholar 

  2. Aboulmira, A., Hrimech, H., Lachgar, M.: Comparative study of multiple CNN models for classification of 23 skin diseases. Int. J. Online Biomed. Eng. 18, 127–142 (2022)

    Google Scholar 

  3. Wang, Y.: Computer-aided diagnosis of skin cancer with deep learning: addressing the challenges of practical applications. Doctoral dissertation, University of British Columbia (2022)

    Google Scholar 

  4. Aamodt, E.: Combating class imbalances in image classification-a deep neural network-based method for skin disease classification. Master’s thesis, University of Agder (2022)

    Google Scholar 

  5. Lalli, M., Amutha, S.: Evaluation of feature selection methods for disease survival prediction using proposed entropy-based topsis technique (2021)

    Google Scholar 

  6. Rajpoot, A., Saluja, G., Malsa, N., Gupta, V.: A Pchapter swarm optimization based ANN predictive model for statistical detection of COVID-19. In: Artificial Intelligence in Healthcare, pp. 21–34. Springer, Singapore (2022)

    Google Scholar 

  7. Srinivasu, P.N., SivaSai, J.G., Ijaz, M.F., Bhoi, A.K., Kim, W., Kang, J.J.: Classification of skin disease using deep learning neural networks with MobileNet V2 and LSTM. Sensors 21(8), 2852 (2021)

    Article  Google Scholar 

  8. Abunadi, I., Senan, E.M.: Deep learning and machine learning techniques of diagnosis dermoscopy images for early detection of skin diseases. Electronics 10(24), 3158 (2021)

    Article  Google Scholar 

  9. Elngar, A.A., Kumar, R., Hayat, A., Churi, P.: Intelligent system for skin disease prediction using machine learning. J. Phys. Conf. Ser. 1998(1), 012037 (2021)

    Google Scholar 

  10. Fan, J., Kim, J., Jung, I., Lee, Y.: A study on multiple factors affecting the accuracy of multiclass skin disease classification. Appl. Sci. 11(17), 7929 (2021)

    Article  Google Scholar 

  11. Hashmani, M.A., Jameel, S.M., Rizvi, S.S.H., Shukla, S.: An adaptive federated machine learning-based intelligent system for skin disease detection: a step toward an intelligent dermoscopy device. Appl. Sci. 11, 2145 (2021)

    Article  Google Scholar 

  12. Polat, K., Koc, K.O.: Detection of skin diseases from dermoscopy image using the combination of convolutional neural network and one-versus-all. J. Artif. Intell. Syst. 2, 80–97 (2020). https://doi.org/10.33969/AIS.2020.21006

  13. Pham, T.C., Doucet, A., Luong, C.M., Tran, C.T., Hoang, V.D.: Improving skin-disease classification based on customized loss function combined with balanced mini-batch logic and real-time image augmentation. IEEE Access 8, 150725–150737 (2020)

    Article  Google Scholar 

  14. Hameed, N., Shabut, A.M., Ghosh, M.K., Hossain, M.A.: Multi-class multi-level classification algorithm for skin lesions classification using machine learning techniques. Expert Syst. Appl. 141, 112961 (2020)

    Article  Google Scholar 

  15. Pugazhenthi, V., et al.: Skin disease detection and classification. Int. J. Adv. Eng. Res. Sci. (IJAERS) 6(5), 396–400 (2019)

    Article  Google Scholar 

  16. Wu, Z.H.E., et al.: Studies on different CNN algorithms for face skin disease classification based on clinical images. IEEE Access 7, 66505–66511 (2019)

    Article  Google Scholar 

  17. Chaurasia, V., Pal, S.: Skin diseases prediction: binary classification machine learning and multi model ensemble techniques. Res. J. Pharm. Technol. 12(8), 3829–3832 (2019)

    Article  Google Scholar 

  18. Mridha, K., et al.: Plant disease detection using web application by neural network. In: 2021 IEEE 6th International Conference on Computing, Communication and Automation (ICCCA), pp. 130–136 (2021). https://doi.org/10.1109/ICCCA52192.2021.9666354

  19. Adhikary, A., Majumder, K., Chatterjee, S., Shaw, R.N., Ghosh, A.: Machine learning based approaches in the detection of Parkinson’s disease – a comparative study. In: Mekhilef, S., Shaw, R.N., Siano, P. (eds.) ICEEE 2022. LNEE, vol. 894, pp. 774–793. Springer, Singapore (2022). https://doi.org/10.1007/978-981-19-1677-9_68

    Chapter  Google Scholar 

  20. Alenezi, N.S.A.: A method of skin disease detection using image processing and machine learning. Procedia Comput. Sci. 163, 85–92 (2019)

    Google Scholar 

  21. Okuboyejo, D.A., Olugbara, O.O., Odunaike, S.A.: Automating skin disease diagnosis using image classification. In: Proceedings of the World Congress on Engineering and Computer Science, vol. 2, pp. 850–854, October 2013

    Google Scholar 

  22. Lucius, M., et al.: Deep neural frameworks improve the accuracy of general practitioners in the classification of pigmented skin lesions. Diagnostics 10(11), 969 (2020)

    Article  Google Scholar 

  23. Aydogdu, M.F., Celik, V., Demirci, M.F.: Comparison of three different CNN architectures for age classification. In: 2017 IEEE 11th International Conference on Semantic Computing (ICSC), pp. 372–377. IEEE, January 2017

    Google Scholar 

  24. Ji, Q., Huang, J., He, W., Sun, Y.: Optimized deep convolutional neural networks for identification of macular diseases from optical coherence tomography images. Algorithms 12(3), 51 (2019)

    Article  MathSciNet  Google Scholar 

  25. Gupta, V., Bibhu, V.: Deep residual network based brain tumor segmentation and detection with MRI using improved invasive bat algorithm. Multimedia Tools Appl., 1–23 (2022)

    Google Scholar 

  26. Malsa, N., Singh, P., Gautam, J., Srivastava, A., Singh, S.P.: Source of treatment selection for different states of India and performance analysis using machine learning algorithms for classification. In: Soft Computing: Theories and Applications, pp. 235–245. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-4032-5_23

  27. Palimkar, P., Shaw, R.N., Ghosh, A.: Machine learning technique to prognosis diabetes disease: random forest classifier approach. In: Bianchini, M., Piuri, V., Das, S., Shaw, R.N. (eds.) Advanced Computing and Intelligent Technologies. LNNS, vol. 218, pp. 219–244. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-2164-2_19

    Chapter  Google Scholar 

  28. Ann, A.J., Ruiz, C.: Using deep learning for melanoma detection in dermoscopy images. Int. J. Mach. Learn. Comput. 8(1), 61–68 (2018)

    Article  Google Scholar 

  29. Srinivasan, K., et al.: Performance comparison of deep CNN models for detecting driver’s distraction. CMC-Comput. Mater. Continua 68(3), 4109–4124 (2021)

    Article  Google Scholar 

  30. Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C.: A survey on deep transfer learning. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) International Conference on Artificial Neural Networks, pp. 270–279. Springer, Cham, October 2018. https://doi.org/10.1007/978-3-030-01424-7_27

  31. Rawat, S.S., Verma, S.K., Kumar, Y.: Infrared small target detection based on non-convex triple tensor factorisation. IET Image Proc. 15(2), 556–570 (2021)

    Article  Google Scholar 

  32. Rawat, S.S., Verma, S.K., Kumar, Y.: Reweighted infrared patch image model for small target detection based on non-convex ℒp-norm minimisation and TV regularisation. IET Image Proc. 14(9), 1937–1947 (2020)

    Article  Google Scholar 

  33. Rawat, S.S., Alghamdi, S., Kumar, G., Alotaibi, Y., Khalaf, O.I., Verma, L.P.: Infrared small target detection based on partial sum minimization and total variation. Mathematics 10(4), 671 (2022)

    Article  Google Scholar 

  34. Rawat, S.S., Singh, S., Alotaibi, Y., Alghamdi, S., Kumar, G.: Infrared target-background separation based on weighted nuclear norm minimization and robust principal component analysis. Mathematics 10(16), 2829 (2022)

    Article  Google Scholar 

  35. Singh, S., et al.: Hybrid models for breast cancer detection via transfer learning technique (2022)

    Google Scholar 

  36. Singh, S.: Deep attention network for pneumonia detection using chest x-ray images (2022)

    Google Scholar 

  37. Malsa, N., Vyas, V., Gautam, J.: RMSE calculation of LSTM models for predicting prices of different cryptocurrencies. Int. J. Syst. Assur. Eng. Manag. (2021).https://doi.org/10.1007/s13198-021-01431-1

  38. Gupta, P., Malsa, N., Saxena, N., Agarwal, S., Singh, S.P.: Short-term load forecasting using parametric and non-parametric approaches. In: Pant, M., Sharma, T.K., Verma, O.P., Singla, R., Sikander, A. (eds.) Soft Computing: Theories and Applications. AISC, vol. 1053, pp. 747–755. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0751-9_68

    Chapter  Google Scholar 

  39. Gautam, J., Malsa, N., Gautam, S., Gaur, N.K., Adhikary, P., Pathak, S.: Selecting a family planning method for various age groups of different states in India. In: 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON), pp. 1–6 (2021). https://doi.org/10.1109/GUCON50781.2021.9573825

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vimal Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mishra, S. et al. (2023). A Comprehensive Review on Skin Disease Classification Using Convolutional Neural Network and Support Vector Machine. In: Shaw, R.N., Paprzycki, M., Ghosh, A. (eds) Advanced Communication and Intelligent Systems. ICACIS 2022. Communications in Computer and Information Science, vol 1749. Springer, Cham. https://doi.org/10.1007/978-3-031-25088-0_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25088-0_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25087-3

  • Online ISBN: 978-3-031-25088-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics