A Comprehensive Study of Plant Disease Detection Using Deep Learning Methods | SpringerLink
Skip to main content

A Comprehensive Study of Plant Disease Detection Using Deep Learning Methods

  • Conference paper
  • First Online:
Advanced Communication and Intelligent Systems (ICACIS 2022)

Abstract

Growing crops for human consumption and financial benefit is known as agriculture. It is the capability of using cutting-edge methods to cultivate crops and raise animals. As a result, the quality of the crop production is crucial to the development of the economy. In the agriculture industry, plant diseases and pests pose the biggest threat to crop production. Thus, it is essential to develop a method for accurately recognizing these illnesses so that the appropriate steps can be taken to treat them, increasing crop quality and quantity. A reliable disease detection system can be created by combining tools for classifying and extracting information with computer vision or image processing techniques employing deep learning. Different researchers have offered different approaches for identifying plant diseases. This study analyses these techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Saleem, M.H., Potgieter, J., Arif, K.M.: Plant disease detection and classification by deep learning. Plants 8(11), 468 (2021)

    Google Scholar 

  2. Guan, X.: A novel method of plant leaf disease detection based on deep learning and convolutional neural network. In: 6th International Conference on Intelligent Computing and Signal Processing (ICSP), pp. 816–819 (2021). https://doi.org/10.1109/ICSP51882.2021.9408806

  3. Kawasaki, Y., Uga, H., Kagiwada, S., Iyatomi, H.: Basic study of automated diagnosis of viral plant diseases using convolutional neural networks. International Symposium on Visual Computing, pp. 638–645 (2015). https://doi.org/10.1007/978-3-319-27863-6_59

  4. Brahimi, M., Arsenovic, M., Laraba, S., Sladojevic, S., Boukhalfa, K., Moussaoui, A.: Deep learning for plant diseases: detection and saliency map visualisation. In: Human and machine learning, pp. 93–117 (2017). https://doi.org/10.1007/978-3-319-90403-0_6

  5. Jasim, M.A., Al-Tuwaijari, J.M.: Plant leaf diseases detection and classification using image processing and deep learning techniques. In: International Conference on Computer Science and Software Engineering (CSASE), pp. 259–265 (2020)

    Google Scholar 

  6. Nagaraju, M., Chawla, P.: Systematic review of deep learning techniques in plant disease detection. In: Int. J. System Assurance Eng. Manage. 11(3), 547–560 (2020)

    Google Scholar 

  7. Amara, J., Bouaziz, B., Algergawy, A.: A deep learning-based approach for banana leaf diseases classification. Datenbanksysteme für Business, Technologie und Web (2017)

    Google Scholar 

  8. Guo, Y., et al.: Plant disease identification based on deep learning algorithm in smart farming. Discrete Dynamics in Nature and Society (2020)

    Google Scholar 

  9. Hruška, J., et al.: Machine learning classification methods in hyperspectral data processing for agricultural applications. In: International Conference on Geoinformatics and Data Analysis pp. 137–141 (2018)

    Google Scholar 

  10. Bai, X., Li, X., Fu, Z., Lv, X., Zhang, L.: A fuzzy clustering segmentation method based on neighbourhood grayscale information for defining cucumber leaf spot disease images. Computers and Electronics in Agriculture 136, 157–165 (2017). https://doi.org/10.1016/j.compag.2017.03.004

  11. Barbedo, J.G.A.: A review on the main challenges in automatic plant disease identification based on visible range images. Biosystems Eng. 144, 52–60 (2016)

    Google Scholar 

  12. Brahimi, M., Boukhalfa, K., Moussaoui, A.: Deep learning for tomato diseases: classification and symptoms visualisation. Applied Artificial Intelligence 31(4), 299–315 (2017). https://doi.org/10.1080/08839514.2017.1315516

  13. Cruz, A.C., Luvisi, A., De Bellis, L., Ampatzidis, Y.: X-FIDO: An effective application for detecting olive quick decline syndrome with deep learning and data fusion. Frontiers in Plant Science 8, 1741 (2017). https://doi.org/10.3389/fpls.2017.01741

  14. DeChant, C., et al.: Automated identification of northern leaf blight-infected maize plants from field imagery using deep learning. Phytopathology 107(11), 1426–1432 (2017)

    Google Scholar 

  15. Durmuş, H., Güneş, E.O., Kırcı, M.: Disease detection on the leaves of the tomato plants by using deep learning. In: 6th International Conference on Agro-Geoinformatics, pp. 1–5 (2017)

    Google Scholar 

  16. Ferentinos, K.P.: Deep learning models for plant disease detection and diagnosis. Computers and Electronics in Agriculture 145, 311–318 (2018)

    Google Scholar 

  17. Fuentes, A., Yoon, S., Kim, S.C, Park, D.S.: A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition. Sensors 9, 2022 (2017)

    Google Scholar 

  18. Mindhe, O., Kurkute, O., Naxikar, S., Raje, N.: Plant disease detection using deep learning. In: International Research Journal of Engineering and Technology, pp. 2497–2503 (2020)

    Google Scholar 

  19. Lu, Y., Yi, S., Zeng, N., Liu, Y., Zhang, Y.: Identification of rice diseases using deep convolutional neural networks. Neurocomputing 267, 378–384 (2017)

    Google Scholar 

  20. Ferreira, A. dos Santos, Freitas, D.M., Silva, G.G. da, Pistori, H., Folhes, M.T.: Weed detection in soybean crops using ConvNets. Computers and Electronics in Agriculture 143, 314–324 (2017)

    Google Scholar 

  21. Oppenheim, D., Shani, G.: Potato disease classification using convolutional neural network. Advances in Animal Biosciences, pp.244–249 (2017)

    Google Scholar 

  22. Arshad, M.S., Rehman, U.A., Fraz, M.M.: Plant disease identification using transfer learning. In: 2021 International Conference on Digital Futures and Transformative Technologies (ICoDT2), pp. 1–5 (2021). https://doi.org/10.1109/ICoDT252288.2021.9441512

  23. Chellapandi, B., Vijayalakshmi, M., Chopra, S.: Comparison of pre-trained models using transfer learning for detecting plant disease. In: 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), pp. 383–387 (2021). https://doi.org/10.1109/ICCCIS51004.2021.9397098

  24. Srinidhi, V.V., Sahay, A., Deeba, K.: Plant pathology disease detection in apple leaves using deep convolutional neural networks : apple leaves disease detection using efficientnet and densenet. In: 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), pp. 1119–1127 (2021). https://doi.org/10.1109/ICCMC51019.2021.9418268

  25. Akshai, K.P.A., Anitha, J.: Plant disease classification using deep learning. In: 2021 3rd International Conference on Signal Processing and Communication (ICPSC), pp. 407–411 (2021). https://doi.org/10.1109/ICSPC51351.2021.9451696

  26. Ashok, S., Kishore, G., Rajesh, V., Suchitra, S., Sophia, S.G.G., Pavithra, B.: Tomato leaf disease detection using deep learning techniques. In: 2020 5th International Conference on Communication and Electronics Systems (ICCES), pp. 979–983 (2020). https://doi.org/10.1109/ICCES48766.2020.9137986

  27. Militante, S.V., Gerardo, B.D., Medina, R.P.: Sugarcane disease recognition using deep learning. In: 2019 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE), pp. 575–578 (2019). https://doi.org/10.1109/ECICE47484.2019.8942690

  28. Mohanty, S.P., Hughes, D.P., Salathé, M.: Using deep learning for image-based plant disease detection. Front. Plant Sci. 7, 1419 (2016)

    Article  Google Scholar 

  29. Arivazhagan, S., Shebiah, R.N., Ananthi, S., Varthini, S.V.: Detection of unhealthy regions of plant leaves and classification of plant leaf diseases using texture features. Agric. Eng. Int. CIGR J. 15(1), 211–217 (2013)

    Google Scholar 

  30. Kulkarni, A.H., Patil, A.: Applying image processing techniques to detect plant diseases. Int. J. Modern Eng. Res. 2(5), 3661–3664 (2012)

    Google Scholar 

  31. Cortes, E.: Plant Disease Classification Using Convolutional Networks and Generative Adversarial Networks. Stanford University Reports, Stanford (2017)

    Google Scholar 

  32. Bankar, J., Gavai, N.R.: Convolutional neural network based inception V3 model for animal classification. Int. J. Advanced Research in Computer Communication Eng. 7(5), 142–146 (2018)

    Google Scholar 

  33. Mridha, K., et al.: Plant disease detection using web application by neural network. In: 2021 IEEE 6th International Conference on Computing, Communication and Automation (ICCCA), pp. 130–136 (2021). https://doi.org/10.1109/ICCCA52192.2021.9666354

  34. Afonso, M., Blok, P.M., Polder, G., Van der Wolf, J.M., Kamp, J.: Blackleg detection in potato plants using convolutional neural networks. IFAC-ChaptersOnLine 52(30), 6–11 (2019)

    Article  Google Scholar 

  35. Nandhini, M., Kala, K.U., Thangadarshini, M., Verma, S.M.: Deep Learning model of sequential image classifier for crop disease detection in plantain tree cultivation. Comput. Electron. Agric. 197, 106915 (2022)

    Article  Google Scholar 

  36. Shrivastava, V.K., Pradhan, M.K., Minz, S., Thakur, M.P.: Rice plant disease classification using transfer learning of deep convolutional neural networks. Int. Archives Photogrammetry, Remote Sensing & Spatial Information Sciences 3(6), 631–635 (2019)

    Article  Google Scholar 

  37. Yadav, M.M.G., Nennuri, R., Rajeshwari, D., Rishitha, V., Puneeth, T.: Identification of plant leaf diseases using machine learning algorithms. Annals of the Romanian Society for Cell Biology 25(6), 6866–6875 (2021)

    Google Scholar 

  38. Mohameth, F., Bingcai, C., Sada, K.A.: Plant disease detection with deep learning and feature extraction using plant village. J. Computer and Communications 8(6), 10–22 (2020)

    Article  Google Scholar 

  39. Babu, D.R.K., Chaithanya, M., Sandhya, M., Shireesha, G.: Deep learning model for plant disease detection. In: International Journal of Recent Technology and Engineering (IJRTE), Vol. 9, Issue 1, pp. 750–754 (2020)

    Google Scholar 

  40. Gupta, V., Bibhu, V.: Deep residual network based brain tumor segmentation and detection with MRI using improved invasive bat algorithm. Multimedia Tools and Applications, pp.1–23 (2022)

    Google Scholar 

  41. Palimkar, P., Shaw, R.N., Ghosh, A.: Machine learning technique to prognosis diabetes disease: random forest classifier approach. In: Bianchini, M., Piuri, V., Das, S., Shaw, R.N. (eds.) Advanced Computing and Intelligent Technologies. LNNS, vol. 218, pp. 219–244. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-2164-2_19

    Chapter  Google Scholar 

  42. Bala, M., Mehan, V.: Identification of Rice Plant Diseases Using Image Processing, Machine Learning & Deep Learning: A Review (2021)

    Google Scholar 

  43. Xian, T.S., Ngadiran, R.: Plant diseases classification using machine learning. In: Journal of Physics: Conference Series, Vol. 1962, No. 1, p. 012024. IOP Publishing (2021)

    Google Scholar 

  44. Latif, G., Abdelhamid, S.E., Mallouhy, R.E., Alghazo, J., Kazimi, Z.A.: Deep learning utilisation in agriculture: detection of rice plant diseases using an improved CNN model. Plants 11(17), 2230 (2022)

    Article  Google Scholar 

  45. Malsa, N., Singh, P., Gautam, J., Srivastava, A., Singh, S.P.: Source of treatment selection for different states of india and performance analysis using machine learning algorithms for classification. In: Soft Computing: Theories and Applications, pp. 235–245). Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-4032-5_23

  46. Gautam, J., Atrey, M., Malsa, N., Balyan, A., Shaw, R.N., Ghosh, A.: Twitter data sentiment analysis using naive bayes classifier and generation of heat map for analyzing intensity geographically. In Advances in Applications of Data-Driven Computing, pp. 129–139. Springer, Singapore (2021). https://doi.org/10.1007/978-981-33-6919-1_10

  47. Ramesh, S., Hebbar, R., Niveditha, M., Pooja, R., Shashank, N., Vinod, P.V.: Plant disease detection using machine learning. In: 2018 International Conference on Design Innovations for 3Cs Compute Communication Control (ICDI3C), pp. 41–45 (2018). IEEE

    Google Scholar 

  48. Rahman, C.R., et al.: Identification and recognition of rice diseases and pests using convolutional neural networks. Biosys. Eng. 194, 112–120 (2020)

    Article  Google Scholar 

  49. Jaisakthi, S.M., Mirunalini, P., Thenmozhi, D.: Grape leaf disease identification using machine learning techniques. In: 2019 International Conference on Computational Intelligence in Data Science (ICCIDS), pp. 1–6 (2019). IEEE

    Google Scholar 

  50. Rawat, S.S., Verma, S.K., Kumar, Y.: Infrared small target detection based on non-convex triple tensor factorisation. IET Image Proc. 15(2), 556–570 (2021)

    Article  Google Scholar 

  51. Rawat, S.S., Verma, S.K., Kumar, Y.: Reweighted infrared patch image model for small target detection based on non-convex ℒp-norm minimisation and TV regularisation. IET Image Proc. 14(9), 1937–1947 (2020)

    Article  Google Scholar 

  52. Rawat, S.S., Alghamdi, S., Kumar, G., Alotaibi, Y., Khalaf, O.I., Verma, L.P.: Infrared small target detection based on partial sum minimization and total variation. Mathematics 10(4), 671 (2022)

    Article  Google Scholar 

  53. Rawat, S.S., Singh, S., Alotaibi, Y., Alghamdi, S., Kumar, G.: Infrared target-background separation based on weighted nuclear norm minimization and robust principal component analysis. Mathematics 10(16), 2829 (2022)

    Article  Google Scholar 

  54. Singh, S., et al.: Hybrid Models for Breast Cancer Detection via Transfer Learning Technique

    Google Scholar 

  55. Singh, S., et al.: Deep Attention Network for Pneumonia Detection Using Chest X-Ray Images

    Google Scholar 

  56. Malsa, N., Vyas, V., Gautam, J.: RMSE calculation of LSTM models for predicting prices of different cryptocurrencies. Int. J. Syst. Assur. Eng. Manag., 19 (2021). https://doi.org/10.1007/s13198-021-01431-1

  57. Gupta, P., Malsa, N., Saxena, N., Agarwal, S., Singh, S.P.: Short-term load forecasting using parametric and non-parametric approaches. In: Pant, M., Sharma, T.K., Verma, O.P., Singla, R., Sikander, A. (eds.) Soft Computing: Theories and Applications. AISC, vol. 1053, pp. 747–755. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0751-9_68

    Chapter  Google Scholar 

  58. Gautam, J., Malsa, N., Gautam, S., Gaur, N.K., Adhikary, P., Pathak, S.: Selecting a family planning method for various age groups of different states in India. In: 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON), pp. 1–6 (2021). https://doi.org/10.1109/GUCON50781.2021.9573825

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sur Singh Rawat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haider, K. et al. (2023). A Comprehensive Study of Plant Disease Detection Using Deep Learning Methods. In: Shaw, R.N., Paprzycki, M., Ghosh, A. (eds) Advanced Communication and Intelligent Systems. ICACIS 2022. Communications in Computer and Information Science, vol 1749. Springer, Cham. https://doi.org/10.1007/978-3-031-25088-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25088-0_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25087-3

  • Online ISBN: 978-3-031-25088-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics