A Review of Clustering Techniques on Image Segmentation for Reconstruction of Buildings | SpringerLink
Skip to main content

A Review of Clustering Techniques on Image Segmentation for Reconstruction of Buildings

  • Conference paper
  • First Online:
Advanced Communication and Intelligent Systems (ICACIS 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1749))

Abstract

The discovery of a new clustering technique on segmented images based on building structures is a challenging process for researchers. In this chapter, clustering techniques on image segmentation in buildings reform is a mingled process of segments of image. This chapter suggests review of vsrious clustering techniques and the improved strategy for the assembling of partitioned image segments of a representation into several areas according to a similarity trial value. In this chapter, various clustering techniques on distributed particles of image segments is studied as a more complicated procedure that results in computerized model but still common algorithm is not in function. Hence 41 years ago, finding a centralized algorithmic method in clustering separately with help of available data is changed by the lively growth of a broad variety of extremely fussy techniques. Most of the existing clustering techniques are greatly explicit to a definite kind of facts, and a little study is trail to widen common agenda that incorporates the clustering methods. Clustering can be a entirely habitual procedure, but it accomplishes its most excellent outcomes with partially regular techniques, that are directed by a individual machinist. This idea of partial automated procedure obviously engages a situation in which the creature hand will relate with the algorithms and the data in order to produce most favourable clustering methods. The simplest example of the use of a manual interference throughout the charge of clustering outputs on the concern of available procedures. Beyond the kind of input data, the machinist will have to warily choose the finest bespoke process, which major of the moment cannot be done in a routine forum. The prejudiced position of sight of the person is mandatory. Fuzzy C-means clustering, Parallel K-means clustering, Hierarchical density-based clustering and more clustering procedures are compared and studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Xiong, W., Cheung, C.M., Sander, P.V., Joneja, A.: Rationalizing architectural surfaces based on clustering of joints. IEEE Trans. Visual. Comput. Graphics 28, 4274–4288 (2022)

    Article  Google Scholar 

  2. Feist, S., Sanhudo, L., Esteves, V.: Miguel pires and antónio aguiar costa “semi-supervised clustering for architectural modularisation.” Buildings 12, 303 (2022)

    Article  Google Scholar 

  3. Jubair, A.M., et al.: Optimization of clustering in wireless sensor networks: techniques and protocols. Appl. Sci. 11, 11448 (2021)

    Article  Google Scholar 

  4. Araldi, A., Emsellem, D., Fusco, G., Tettamanzi, A., Overal, D.: Exploring building typologies through fast iterative Bayesian clustering. In: Communications SAGEO’2021 – La Rochelle, 5–7 May 2021

    Google Scholar 

  5. Cohen-Addad, V., Lattanzi, S., Norouzi-Fard, A., Sohler, C.: Parallel and efficient hierarchical k-median clustering. In: 35th Conference on Neural Information Processing Systems (NeurIPS 2021)

    Google Scholar 

  6. Weng, S., Gou, J., Fan, Z.: h-DBSCAN: A ssimple fast DBSCAN algorithm for big data. In: Proceedings of Machine Learning Research 157, 2021 ACML (2021)

    Google Scholar 

  7. Zhang, H., Davidson, I.: Deep descriptive clustering. In: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21) (2021)

    Google Scholar 

  8. Jain, M., AlSkaif, T., Dev, S.: Validating clustering frameworks for electric load demand profiles. IEEE Trans. Ind. Inf. 17(12), 8057–8065 (2021). https://doi.org/10.1109/TII.2021.3061470

    Article  Google Scholar 

  9. Gamal, A., et al.: Automatic LIDAR building segmentation based on DGCNN and euclidean clustering. J. Big data 7, 102 (2020)

    Article  Google Scholar 

  10. Talei, H., Benhaddou, D., Gamarra, C., Benbrahim, H., Essaaidi, M.: Smart building energy inefficiencies detection through time series analysis and unsupervised machine learning. Energies 14(19), 6042 (2021). https://doi.org/10.3390/en14196042

    Article  Google Scholar 

  11. Lévy, L.-N., Bosom, J., Guerard, G., Amor, S.B., Bui, M., Tran, H.: Application of pretopological hierarchical clustering for buildings portfolio. In: SMARTGREENS 2021 – 10th International Conference on Smart Cities and Green ICT Systems, pp. 228–235 (2021)

    Google Scholar 

  12. Liu, S., et al.: Efficient one-pass multi-view subspace clustering with consensus anchors. In: Association for the Advancement of Artificial Intelligence. www.aaai.org (2021)

  13. Eggimann, S., et al.: Spatiotemporal upscaling errors of building stock clustering for energy demand simulation. Energy Buildings 258, 111844 (2022). https://doi.org/10.1016/j.enbuild.2022.111844

    Article  Google Scholar 

  14. Rajawat, A.S., Rawat, R., Barhanpurkar, K., Shaw, R.N., Ghosh, A.: Vulnerability analysis at industrial internet of things platform on dark web network using computational intelligence. In: Bansal, J.C., Paprzycki, M., Bianchini, M., Das, S. (eds.) Computationally Intelligent Systems and their Applications. SCI, vol. 950, pp. 39–51. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-0407-2_4

    Chapter  Google Scholar 

  15. Kauffmann, J., et al.: From clustering to cluster explanations via neural networks. IEEE Trans. Neural Netw. Learning Syst. 1–15. https://doi.org/10.1109/TNNLS.2022.3185901

  16. Bedi, P., Goyal, S.B., Rajawat, A.S., Shaw, R.N., Ghosh, A.: A framework for personalizing atypical web search sessions with concept-based user profiles using selective machine learning techniques. In: Bianchini, M., Piuri, V., Das, S., Shaw, R.N. (eds.) Advanced Computing and Intelligent Technologies. LNNS, vol. 218, pp. 279–291. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-2164-2_23

    Chapter  Google Scholar 

  17. Banerjee, A., et al.: Construction of effective wireless sensor network for smart communication using modified ant colony optimization technique. In: Bianchini, M., Piuri, V., Das, S., Shaw, R.N. (eds.) Advanced Computing and Intelligent Technologies. LNNS, vol. 218, pp. 269–278. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-2164-2_22

    Chapter  Google Scholar 

  18. Xiao, R.: Comparing and clustering residential layouts using a novel measure of grating difference. Nexus Netw. J. 23(1), 187–208 (2020). https://doi.org/10.1007/s00004-020-00530-z

    Article  MATH  Google Scholar 

  19. Goyal, S.B., Bedi, P., Rajawat, A.S., Shaw, R.N., Ghosh, A.: Multi-objective fuzzy-swarm optimizer for data partitioning. In: Bianchini, M., Piuri, V., Das, S., Shaw, R.N. (eds.) Advanced Computing and Intelligent Technologies. LNNS, vol. 218, pp. 307–318. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-2164-2_25

    Chapter  Google Scholar 

  20. Ischenko, A.V., Shishkunova, D.V., Guryanov, N.P.: Clustering and its key features’ formation in construction. IOP Conf. Series: Mater. Sci. Eng. 1083, 012103 (2021)

    Article  Google Scholar 

  21. Munawar, H.S., Ullah, F., Qayyum, S., Shahzad, D.: Big data in construction: current applications and future opportunities. Big Data Cogn. Comput. 6(1), 18 (2022). https://doi.org/10.3390/bdcc6010018

    Article  Google Scholar 

  22. Wang, C., Pedrycz, W., Yang, J., Zhou, M.C., Li, Z.W.: Wavelet frame-based fuzzy c-means clustering for segmenting images on graphs. IEEE Trans. Cybern. 50(9), 3938–3949 (2020). https://doi.org/10.1109/TCYB.2019.2921779

    Article  Google Scholar 

  23. Jasim, W., Mohammed, R.: A survey on segmentation techniques for image processing. Iraqi J. Electr. Electron. Eng. 17(2), 73–93 (2021). https://doi.org/10.37917/ijeee.17.2.10

    Article  Google Scholar 

  24. Palimkar, P., Bajaj, V., Mal, A.K., Shaw, R.N., Ghosh, A.: Unique action identifier by using magnetometer, accelerometer and gyroscope: KNN approach. In: Bianchini, M., Piuri, V., Das, S., Shaw, R.N. (eds.) Advanced Computing and Intelligent Technologies. LNNS, vol. 218, pp. 607–631. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-2164-2_48

    Chapter  Google Scholar 

  25. Singha, S., Srivastava, S.: Review of clustering techniques in control system. Procedia Comput. Sci. 173, 272–280 (2020)

    Article  Google Scholar 

  26. Kumar, A., Das, S., Tyagi, V., Shaw, R.N., Ghosh, A.: Analysis of classifier algorithms to detect anti-money laundering. In: Bansal, J.C., Paprzycki, M., Bianchini, M., Das, S. (eds.) Computationally Intelligent Systems and their Applications. SCI, vol. 950, pp. 143–152. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-0407-2_11

    Chapter  Google Scholar 

  27. Mittal, H.: A comprehensive survey of image segmentation: clustering methods, performance parameters, and benchmark datasets. Multimedia Tools Appl. 81, 35001–35026 (2022)

    Article  Google Scholar 

  28. Han, Q., Yin, Q., Zheng, X., Chen, Z.: Remote sensing image building detection method based on Mask R-CNN. Complex Intell. Syst. 8(3), 1847–1855 (2022). https://doi.org/10.1007/s40747-021-00322-z

    Article  Google Scholar 

  29. Liu, W., et al.: Renyi’s entropy based multilevel thresholding using a novel meta-heuristics algorithm. Appl. Sci. 10, 3225 (2020). https://doi.org/10.3390/app10093225

    Article  Google Scholar 

  30. Herman, E., Zsido, K.-E., Fenyves, V.: Cluster analysis with K-mean versus K-medoid in financial performance evaluation. Appl. Sci. 12, 7985 (2022)

    Article  Google Scholar 

  31. Akhtar, M.N., et al.: Implementation of parallel k-means algorithm to estimate adhesion failure in warm mix asphalt. Adv. Civil Eng. 2020, 1–26 (2020). https://doi.org/10.1155/2020/8848945

    Article  Google Scholar 

  32. Sinha, T., Chowdhury, T., Shaw, R.N., Ghosh, A.: Analysis and prediction of COVID-19 confirmed cases using deep learning models: a comparative study. In: Bianchini, M., Piuri, V., Das, S., Shaw, R.N. (eds.) Advanced Computing and Intelligent Technologies. LNNS, vol. 218, pp. 207–218. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-2164-2_18

    Chapter  Google Scholar 

  33. Prashanthi, B., Sowjanya, G.: Clustering techniques in medical analysis using deep representations. Int. J. Adv. Sci. Technol. 29(12s), 2184–2189 (2020)

    Google Scholar 

  34. Mukhopadhyay, M., et.al.,: Facial emotion recognition based on textural pattern and convolutional neural network. In: 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON), pp. 1–6 (2021). https://doi.org/10.1109/GUCON50781.2021.9573860

  35. Manoharan, S.: Performance analysis of clustering based image segmentation techniques. J. Innovative Image Process. (JIIP) 02(01), 14–24 (2020)

    Article  Google Scholar 

  36. Dubey, S.K., Vijay, S., Pratibha: A review of image segmentation using clustering methods. Int. J. Appl. Eng. Res. 13(5), 2484–2489 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duraimoni Neguja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Neguja, D., Rajan, A.S. (2023). A Review of Clustering Techniques on Image Segmentation for Reconstruction of Buildings. In: Shaw, R.N., Paprzycki, M., Ghosh, A. (eds) Advanced Communication and Intelligent Systems. ICACIS 2022. Communications in Computer and Information Science, vol 1749. Springer, Cham. https://doi.org/10.1007/978-3-031-25088-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25088-0_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25087-3

  • Online ISBN: 978-3-031-25088-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics