Abstract
Cardiovascular disease (CVD), includes a number of conditions that affect the heart and, in recent decades, has been the leading cause of death worldwide. Heart disease is linked to a variety of dangers, making it urgently necessary to find precise, reliable, and reasonable ways to make an early diagnosis and start treating the condition. Early diagnosis of cardiovascular illnesses can assist high-risk individuals in deciding on lifestyle changes that will minimise issues, which can be a big medical advancement. Since it takes more intelligence, time and expertise to provide 24-h medical consultations for patients, it is not always possible to accurately monitor patients every day. While an incorrect diagnosis of CVD can be catastrophic, an accurate diagnosis can lower the chance of major health issues. In order to compare the findings and analysis, various machine learning methods and deep learning are used.
Data analysis is a frequently used technique for analysing enormous amounts of data in the healthcare industry. In order to help healthcare professionals forecast heart illness, researchers analyse enormous volumes of complex health records utilising various statistical and machine learning (ML) techniques.
The main objective is to identify an appropriate method for heart disease prediction that is effective and precise. In this chapter, we conducted research on heart disease from the perspective of data analytics. To identify and anticipate the patterns of diseases, we applied different data analytical techniques on data sets of various sizes. We determined which algorithms were the most pertinent and also examined the accuracy, sensitivity, specificity and precision rate of various algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dey, D., et al.: Artificial intelligence in cardiovascular Imaging: JACC state-of-the-art review. J. Am. Coll. Cardiol. 73(11), 1317–1335 (2019). https://doi.org/10.1016/j.jacc.2018.12.054. PMID: 30898208; PMCID: PMC6474254
Seetharam, K., Shrestha, S., Sengupta, P.P.: Cardiovascular imaging and intervention through the lens of artificial intelligence. Interv. Cardiol. 16, e31 (2021). https://doi.org/10.15420/icr.2020.04. PMID: 34754333; PMCID: PMC8559149
Friedrich, S., et al.: Applications of artificial intelligence/machine learning approaches in cardiovascular medicine: a systematic review with recommendations. Eur. Heart J. Digit. Health 2(3), 424–436 (2021). https://doi.org/10.1093/ehjdh/ztab054
Benjamins, J.W., Hendriks, T., Knuuti, J., Juarez-Orozco, L.E., van der Harst, P.: A primer in artificial intelligence in cardiovascular medicine. Neth. Hear. J. 27(9), 392–402 (2019). https://doi.org/10.1007/s12471-019-1286-6
Anju, S., et al.: Discovering patterns of cardiovascular disease and diabetes in myocardial infarction patients using association rule mining. https://doi.org/10.20473/fmi.v58i3.34975. eISSN: 2599-056x
Kilic, A.: Artificial intelligence and machine learning in cardiovascular health care. Ann Thorac Surg. 109(5), 1323–1329 (2020). https://doi.org/10.1016/j.athoracsur.2019.09.042. PMID: 31706869
Koulaouzidis, G., Jadczyk, T., Iakovidis, D.K., Koulaouzidis, A., Bisnaire, M., Charisopoulou, D.: Artificial intelligence in cardiology-a narrative review of current status. J. Clin. Med. 11(13), 3910 (2022). https://doi.org/10.3390/jcm11133910. PMID: 35807195; PMCID: PMC9267740
Alam, M.S., Jalil, S.Z.A., Upreti, K.: Analyzing recognition of EEG based human attention and emotion using machine learning. Mater. Today Proc. 56, Part 6, 3349–3354 (2022). https://doi.org/10.1016/j.matpr.2021.10.190. ISSN 2214-7853
Krittanawong, C., Zhang, H., Wang, Z., Aydar, M., Kitai, T.: Artificial intelligence in precision cardiovascular medicine. J. Am. Coll. Cardiol. 69(21), 2657–2664 (2017). https://doi.org/10.1016/j.jacc.2017.03.571. PMID: 28545640
Seetharam, K., Shrestha, S., Sengupta, P.P.: Artificial intelligence in cardiovascular medicine. Curr. Treat. Options Cardiovasc. Med. 21(5), 1–14 (2019). https://doi.org/10.1007/s11936-019-0728-1
Upreti, K., Singh, U.K., Jain, R., Kaur, K., Sharma, A.K.: Fuzzy logic based support vector regression (SVR) model for software cost estimation using machine learning. In: Tuba, M., Akashe, S., Joshi, A. (eds.) ICT Systems and Sustainability. LNNS, vol. 321, pp. 917–927. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-5987-4_90
Haq, I.U., Chhatwal, K., Sanaka, K., Xu, B.: Artificial intelligence in cardiovascular medicine: current insights and future prospects. Vasc Health Risk Manag. 12(18), 517–528 (2022). https://doi.org/10.2147/VHRM.S279337. PMID: 35855754; PMCID: PMC9288176
Faizal, A.S.M., Malathi Thevarajah, T., Khor, S.M., Chang, S.-W.: A review of risk prediction models in cardiovascular disease: conventional approach vs. artificial intelligent approach. Comput. Methods Program. Biomed. 207, 106190 (2021). https://doi.org/10.1016/j.cmpb.2021.106190. ISSN: 0169-2607
Johnson, K.W., et al.: Artificial intelligence in cardiology. J. Am. Coll. Cardiol. 71(23), 2668–2679 (2018). https://doi.org/10.1016/j.jacc.2018.03.521. PMID: 29880128
Abdolmanafi, A., Duong, L., Dahdah, N., Cheriet, F.: Deep feature learning for automatic tissue classification of coronary artery using optical coherence tomography. Biomed Opt Express. 8(2), 1203–1220 (2017). https://doi.org/10.1364/BOE.8.001203. PMID: 28271012; PMCID: PMC5330543
Li, Y.: Reinforcement learning applications, 19 August 2019. https://arxiv.org/abs/1908.06973
Haider, M., Upreti, K., Nasir, M., Alam, M., Sharma, A.K.: Addressing image and Poisson noise deconvolution problem using deep learning approaches. Comput. Intell. (2022). https://doi.org/10.1111/coin.12510
Dilsizian, M.E., Siegel, E.L.: Machine meets biology: a primer on artificial intelligence in cardiology and cardiac imaging. Curr. Cardiol. Rep. 20(12), 1–7 (2018). https://doi.org/10.1007/s11886-018-1074-8
Webb, G., Boughton, J., Wang, Z.: Not so Naive Bayes: aggregating one-dependence estimators. Mach. Learn. 58, 5–24 (2005). https://doi.org/10.1007/s10994-005-4258-6
Berikol, G.B., Yildiz, O., Özcan, İT.: Diagnosis of acute coronary syndrome with a support vector machine. J. Med. Syst. 40(4), 1–8 (2016). https://doi.org/10.1007/s10916-016-0432-6
Palm, M., Parija, S.: Prediction of heart diseases using random forest. J. Phys. Conf. Ser. 1817, 012009 (2021)
Chakraborty, A., Chatterjee, S., Majumder, K., Shaw, R.N., Ghosh, A.: A comparative study of myocardial infarction detection from ECG data using machine learning. In: Bianchini, M., Piuri, V., Das, S., Shaw, R.N. (eds.) Advanced Computing and Intelligent Technologies. LNNS, vol. 218, pp. 257–267. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-2164-2_21
Al-Mallah, M.H., et al.: Using machine learning to define the association between cardiorespiratory fitness and all-cause mortality (from the henry ford exercise testing project). Am. J. Cardiol. 120(11), 2078–2084 (2017). https://doi.org/10.1016/j.amjcard.2017.08.029. PMID: 28951020
Saqib Nawaz, M., Shoaib, B., Ashraf, M.A.: Intelligent cardiovascular disease prediction empowered with gradient descent optimization, Heliyon 7(5), e06948 (2021). https://doi.org/10.1016/j.heliyon.2021.e06948. ISSN: 2405–8440
Muhammad, L.J., Al-Shourbaji, I., Haruna, A.A., Mohammed, I.A., Ahmad, A., Jibrin, M.B.: Machine learning predictive models for coronary artery disease. SN Comput. Sci. 2(5), 1–11 (2021). https://doi.org/10.1007/s42979-021-00731-4
Ghosh, P., et al.: Efficient prediction of cardiovascular disease using machine learning algorithms with relief and LASSO feature selection techniques. IEEE Access 9, 19304–19326 (2021). https://doi.org/10.1109/ACCESS.2021.3053759
Stuckey, T.D., et al.: Cardiac Phase Space Tomography: a novel method of assessing coronary artery disease utilizing machine learning. PLoS ONE 13(8), e0198603 (2018). https://doi.org/10.1371/journal.pone.0198603. PMID: 30089110; PMCID: PMC6082503
Kanwal, S., Rashid, J., Nisar, M.W., Kim, J., Hussain, A.: An effective classification algorithm for heart disease prediction with genetic algorithm for feature selection. In: 2021 Mohammad Ali Jinnah University International Conference on Computing (MAJICC), pp. 1–6 (2021). https://doi.org/10.1109/MAJICC53071.2021.9526242
Cherian, V., Bindu, M.S.: Heart disease prediction using naïve Bayes algorithm and Laplace smoothing technique. Int. J. Comput. Sci. Trends Technol. (IJCST) 5(2), 68–73 (2017)
Upreti, K., et al.: Prediction of mechanical strength by using an artificial neural network and random forest algorithm. J. Nanomater. 2022 (2022). https://doi.org/10.1155/2022/7791582
Souza Filho, E.M., et al.: Artificial intelligence in cardiology: concepts, tools and challenges - “The Horse is the One Who Runs, You Must Be the Jockey”. Arq Bras Cardiol. 114(4), 718–725 (2020). https://doi.org/10.36660/abc.20180431. English, Portuguese. PMID: 32491009
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kapoor, A. et al. (2023). Cardiovascular Disease Prognosis and Analysis Using Machine Learning Techniques. In: Shaw, R.N., Paprzycki, M., Ghosh, A. (eds) Advanced Communication and Intelligent Systems. ICACIS 2022. Communications in Computer and Information Science, vol 1749. Springer, Cham. https://doi.org/10.1007/978-3-031-25088-0_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-25088-0_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25087-3
Online ISBN: 978-3-031-25088-0
eBook Packages: Computer ScienceComputer Science (R0)