Empirical Evaluation of Deep Learning Approaches for Landmark Detection in Fish Bioimages | SpringerLink
Skip to main content

Empirical Evaluation of Deep Learning Approaches for Landmark Detection in Fish Bioimages

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Abstract

In this paper we perform an empirical evaluation of variants of deep learning methods to automatically localize anatomical landmarks in bioimages of fishes acquired using different imaging modalities (microscopy and radiography). We compare two methodologies namely heatmap based regression and multivariate direct regression, and evaluate them in combination with several Convolutional Neural Network (CNN) architectures. Heatmap based regression approaches employ Gaussian or Exponential heatmap generation functions combined with CNNs to output the heatmaps corresponding to landmark locations whereas direct regression approaches output directly the (xy) coordinates corresponding to landmark locations. In our experiments, we use two microscopy datasets of Zebrafish and Medaka fish and one radiography dataset of gilthead Seabream. On our three datasets, the heatmap approach with Exponential function and U-Net architecture performs better. Datasets and open-source code for training and prediction are made available to ease future landmark detection research and bioimaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/navdeepkaushish/S_Deep-Fish-Landmark-Prediction.

  2. 2.

    Code: https://github.com/cytomine-uliege. Demo server with datasets: http://research.uliege.cytomine.org/ username: eccv2022bic password: deep-fish.

References

  1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/, software available from tensorflow.org

  2. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2d human pose estimation: new benchmark and state of the art analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3686–3693 (2014)

    Google Scholar 

  3. Aubert, B., Vazquez, C., Cresson, T., Parent, S., De Guise, J.: Automatic spine and pelvis detection in frontal x-rays using deep neural networks for patch displacement learning. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 1426–1429. IEEE (2016)

    Google Scholar 

  4. Bookstein, F.L.: Combining the tools of geometric morphometrics. In: Marcus, L.F., Corti, M., Loy, A., Naylor, G.J.P., Slice, D.E. (eds) Advances in Morphometrics. NATO ASI Series, vol 284, pp. 131–151. Springer, Boston (1996). https://doi.org/10.1007/978-1-4757-9083-2_12(1996)

  5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. Ieee (2009)

    Google Scholar 

  6. Edwards, C.A., Goyal, A., Rusheen, A.E., Kouzani, A.Z., Lee, K.H.: Deepnavnet: automated landmark localization for neuronavigation. Front. Neurosci. 15, 730 (2021)

    Article  Google Scholar 

  7. Fragkoulis, S., Printzi, A., Geladakis, G., Katribouzas, N., Koumoundouros, G.: Recovery of haemal lordosis in gilthead seabream (sparus aurata l.). Sci. Rep. 9(1), 1–11 (2019)

    Google Scholar 

  8. Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 87–102. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_6

    Chapter  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. Huang, W., Yang, C., Hou, T.: Spine landmark localization with combining of heatmap regression and direct coordinate regression. arXiv preprint arXiv:2007.05355 (2020)

  11. Ibragimov, B., Vrtovec, T.: Landmark-based statistical shape representations. In: Statistical Shape and Deformation Analysis, pp. 89–113. Elsevier (2017)

    Google Scholar 

  12. Insafutdinov, E., Pishchulin, L., Andres, B., Andriluka, M., Schiele, B.: DeeperCut: a deeper, stronger, and faster multi-person pose estimation model. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 34–50. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_3

    Chapter  Google Scholar 

  13. Jarque, S., Rubio-Brotons, M., Ibarra, J., Ordoñez, V., Dyballa, S., Miñana, R., Terriente, J.: Morphometric analysis of developing zebrafish embryos allows predicting teratogenicity modes of action in higher vertebrates. Reprod. Toxicol. 96, 337–348 (2020)

    Article  Google Scholar 

  14. Khabarlak, K., Koriashkina, L.: Fast facial landmark detection and applications: A survey. arXiv preprint arXiv:2101.10808 (2021)

  15. Lai, H., Xiao, S., Pan, Y., Cui, Z., Feng, J., Xu, C., Yin, J., Yan, S.: Deep recurrent regression for facial landmark detection. IEEE Trans. Circuits Syst. Video Technol. 28(5), 1144–1157 (2016)

    Article  Google Scholar 

  16. Lee, H., Park, M., Kim, J.: Cephalometric landmark detection in dental x-ray images using convolutional neural networks. In: Medical Imaging 2017: Computer-Aided Diagnosis, vol. 10134, p. 101341W. International Society for Optics and Photonics (2017)

    Google Scholar 

  17. Lindner, C., Cootes, T.F.: Fully automatic cephalometric evaluation using random forest regression-voting. In: IEEE International Symposium on Biomedical Imaging (ISBI) 2015-Grand Challenges in Dental X-ray Image Analysis-Automated Detection and Analysis for Diagnosis in Cephalometric X-ray Image (2015)

    Google Scholar 

  18. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  19. Loy, B.A., Boglione, C., Cataudella, S.: Geometric morphometrics and morpho-anatomy: a combined tool in the study of sea bream (sparus aurata, sparidae) shape. J. Appl. Ichthyol. 15(3), 104–110 (1999)

    Article  Google Scholar 

  20. Mahpod, S., Das, R., Maiorana, E., Keller, Y., Campisi, P.: Facial landmarks localization using cascaded neural networks. Comput. Vis. Image Underst. 205, 103171 (2021)

    Article  Google Scholar 

  21. Marée, R., Rollus, L., Stévens, B., Hoyoux, R., Louppe, G., Vandaele, R., Begon, J.M., Kainz, P., Geurts, P., Wehenkel, L.: Collaborative analysis of multi-gigapixel imaging data using cytomine. Bioinformatics 32(9), 1395–1401 (2016)

    Article  Google Scholar 

  22. Mathis, A., Mamidanna, P., Cury, K.M., Abe, T., Murthy, V.N., Mathis, M.W., Bethge, M.: Deeplabcut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21(9), 1281–1289 (2018)

    Article  Google Scholar 

  23. Mohseni, H., Kasaei, S.: Automatic localization of cephalometric landmarks. In: 2007 IEEE International Symposium on Signal Processing and Information Technology, pp. 396–401. IEEE (2007)

    Google Scholar 

  24. Park, J.H., Hwang, H.W., Moon, J.H., Yu, Y., Kim, H., Her, S.B., Srinivasan, G., Aljanabi, M.N.A., Donatelli, R.E., Lee, S.J.: Automated identification of cephalometric landmarks: Part 1-comparisons between the latest deep-learning methods yolov3 and ssd. Angle Orthod. 89(6), 903–909 (2019)

    Article  Google Scholar 

  25. Payer, C., Štern, D., Bischof, H., Urschler, M.: Regressing heatmaps for multiple landmark localization using CNNs. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 230–238. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_27

    Chapter  Google Scholar 

  26. Payer, C., Štern, D., Bischof, H., Urschler, M.: Integrating spatial configuration into heatmap regression based CNNs for landmark localization. Med. Image Anal. 54, 207–219 (2019)

    Article  Google Scholar 

  27. Rautaray, S.S., Agrawal, A.: Vision based hand gesture recognition for human computer interaction: a survey. Artif. Intell. Rev. 43(1), 1–54 (2015)

    Article  Google Scholar 

  28. Riegler, G., Urschler, M., Ruther, M., Bischof, H., Stern, D.: Anatomical landmark detection in medical applications driven by synthetic data. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 12–16 (2015)

    Google Scholar 

  29. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, U-net: Convolutional networks for biomedical image segmentation (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  30. Samet, N., Akbas, E.: Hprnet: hierarchical point regression for whole-body human pose estimation. Image Vis. Comput. 115, 104285 (2021)

    Article  Google Scholar 

  31. Song, Y., Qiao, X., Iwamoto, Y., Chen, Y.W.: Automatic cephalometric landmark detection on x-ray images using a deep-learning method. Appl. Sci. 10(7), 2547 (2020)

    Google Scholar 

  32. Stern, O., Marée, R., Aceto, J., Jeanray, N., Muller, M., Wehenkel, L., Geurts, P.: Automatic localization of interest points in zebrafish images with tree-based methods. In: Loog, M., Wessels, L., Reinders, M.J.T., de Ridder, D. (eds.) PRIB 2011. LNCS, vol. 7036, pp. 179–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24855-9_16

    Chapter  Google Scholar 

  33. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5693–5703 (2019)

    Google Scholar 

  34. Torosdagli, N., Liberton, D.K., Verma, P., Sincan, M., Lee, J.S., Bagci, U.: Deep geodesic learning for segmentation and anatomical landmarking. IEEE Trans. Med. Imaging 38(4), 919–931 (2018)

    Article  Google Scholar 

  35. Vandaele, R., Aceto, J., Muller, M., Peronnet, F., Debat, V., Wang, C.W., Huang, C.T., Jodogne, S., Martinive, P., Geurts, P., et al.: Landmark detection in 2d bioimages for geometric morphometrics: a multi-resolution tree-based approach. Sci. Rep. 8(1), 1–13 (2018)

    Article  Google Scholar 

  36. Verhaegen, Y., Adriaens, D., De Wolf, T., Dhert, P., Sorgeloos, P.: Deformities in larval gilthead sea bream (sparus aurata): a qualitative and quantitative analysis using geometric morphometrics. Aquaculture 268(1–4), 156–168 (2007)

    Article  Google Scholar 

  37. Weinhardt, V., Shkarin, R., Wernet, T., Wittbrodt, J., Baumbach, T., Loosli, F.: Quantitative morphometric analysis of adult teleost fish by x-ray computed tomography. Sci. Rep. 8(1), 1–12 (2018)

    Article  Google Scholar 

  38. Xu, Z., Li, B., Yuan, Y., Geng, M.: Anchorface: an anchor-based facial landmark detector across large poses. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 3092–3100 (2021)

    Google Scholar 

  39. Yeh, Y.C., Weng, C.H., Huang, Y.J., Fu, C.J., Tsai, T.T., Yeh, C.Y.: Deep learning approach for automatic landmark detection and alignment analysis in whole-spine lateral radiographs. Sci. Rep. 11(1), 1–15 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

N.K., R.R., C.D.B. and Z.D. are fellows of the BioMedAqu project, M.M. is a “Maître de Recherche" at FNRS. Raphaël Marée is supported by the BigPicture EU Research and Innovation Action (Grant agreement number 945358). This work was partially supported by Service Public de Wallonie Recherche under Grant No. 2010235 - ARIAC by DIGITALWALLONIA4.AI. Computational infrastructure is partially supported by ULiège, Wallonia and Belspo funds. We would like to thank the GIGA zebrafish platform (H. Pendeville-Samain) for taking care of and delivering the zebrafish larvae.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navdeep Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, N. et al. (2023). Empirical Evaluation of Deep Learning Approaches for Landmark Detection in Fish Bioimages. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13804. Springer, Cham. https://doi.org/10.1007/978-3-031-25069-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25069-9_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25068-2

  • Online ISBN: 978-3-031-25069-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics