Abstract
Compressed Image Super-resolution has achieved great attention in recent years, where images are degraded with compression artifacts and low-resolution artifacts. Since the complex hybrid distortions, it is hard to restore the distorted image with the simple cooperation of super-resolution and compression artifacts removing. In this paper, we take a step forward to propose the Hierarchical Swin Transformer (HST) network to restore the low-resolution compressed image, which jointly captures the hierarchical feature representations and enhances each-scale representation with Swin transformer, respectively. Moreover, we find that the pretraining with Super-resolution (SR) task is vital in compressed image super-resolution. To explore the effects of different SR pretraining, we take the commonly-used SR tasks (e.g., bicubic and different real super-resolution simulations) as our pretraining tasks, and reveal that SR plays an irreplaceable role in the compressed image super-resolution. With the cooperation of HST and pre-training, our HST achieves the fifth place in AIM 2022 challenge on the low-quality compressed image super-resolution track, with the PSNR of 23.51 dB. Extensive experiments and ablation studies have validated the effectiveness of our proposed methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agustsson, E., Timofte, R.: Ntire 2017 challenge on single image super-resolution: dataset and study. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 126–135 (2017)
Bell-Kligler, S., Shocher, A., Irani, M.: Blind super-resolution kernel estimation using an internal-GAN. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding (2012)
Bross, B., Chen, J., Ohm, J.R., Sullivan, G.J., Wang, Y.K.: Developments in international video coding standardization after AVC, with an overview of versatile video coding (VVC). Proc. IEEE 109(9), 1463–1493 (2021)
Cai, J., Zeng, H., Yong, H., Cao, Z., Zhang, L.: Toward real-world single image super-resolution: a new benchmark and a new model. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3086–3095 (2019)
Cavigelli, L., Hager, P., Benini, L.: CAS-CNN: a deep convolutional neural network for image compression artifact suppression. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 752–759. IEEE (2017)
Charbonnier, P., Blanc-Feraud, L., Aubert, G., Barlaud, M.: Two deterministic half-quadratic regularization algorithms for computed imaging. In: Proceedings of 1st International Conference on Image Processing, vol. 2, pp. 168–172. IEEE (1994)
Chen, H., et al.: Pre-trained image processing transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12299–12310 (2021)
Chen, Y., et al.: Drop an octave: Reducing spatial redundancy in convolutional neural networks with octave convolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3435–3444 (2019)
Dai, T., Cai, J., Zhang, Y., Xia, S.T., Zhang, L.: Second-order attention network for single image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11065–11074 (2019)
Dong, C., Deng, Y., Loy, C.C., Tang, X.: Compression artifacts reduction by a deep convolutional network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 576–584 (2015)
Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2015)
Fu, X., Zha, Z.J., Wu, F., Ding, X., Paisley, J.: JPEG artifacts reduction via deep convolutional sparse coding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2501–2510 (2019)
Gu, J., Lu, H., Zuo, W., Dong, C.: Blind super-resolution with iterative kernel correction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1604–1613 (2019)
Guo, J., Chao, H.: Building dual-domain representations for compression artifacts reduction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 628–644. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_38
Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5197–5206 (2015)
Ji, X., Cao, Y., Tai, Y., Wang, C., Li, J., Huang, F.: Real-world super-resolution via kernel estimation and noise injection. In: proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 466–467 (2020)
Jolicoeur-Martineau, A.: The relativistic discriminator: a key element missing from standard GAN. arXiv preprint arXiv:1807.00734 (2018)
Kim, J., Lee, J.K., Lee, K.M.: Deeply-recursive convolutional network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1637–1645 (2016)
Kim, J., Choi, Y., Uh, Y.: Feature statistics mixing regularization for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11294–11303 (2022)
Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)
Li, X., Jin, X., Fu, J., Yu, X., Tong, B., Chen, Z.: Few-shot real image restoration via distortion-relation guided transfer learning. arXiv preprint arXiv:2111.13078 (2021)
Li, X., et al.: Learning disentangled feature representation for hybrid-distorted image restoration. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 313–329. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_19
Li, X., et al.: Learning omni-frequency region-adaptive representations for real image super-resolution. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 1975–1983 (2021)
Li, X., Shi, J., Chen, Z.: Task-driven semantic coding via reinforcement learning. IEEE Trans. Image Process. 30, 6307–6320 (2021)
Li, X., Sun, S., Zhang, Z., Chen, Z.: Multi-scale grouped dense network for VVC intra coding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 158–159 (2020)
Li, Y., Jin, P., Yang, F., Liu, C., Yang, M.H., Milanfar, P.: COMISR: compression-informed video super-resolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2543–2552 (2021)
Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: SwinIR: image restoration using Swin transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1833–1844 (2021)
Liang, J., Zhang, K., Gu, S., Van Gool, L., Timofte, R.: Flow-based kernel prior with application to blind super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10601–10610 (2021)
Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference On Computer Vision and Pattern Recognition Workshops, pp. 136–144 (2017)
Liu, J., Li, X., Peng, Y., Yu, T., Chen, Z.: SwinIQA: learned Swin distance for compressed image quality assessment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1795–1799 (2022)
Liu, J., Lin, J., Li, X., Zhou, W., Liu, S., Chen, Z.: LIRA: lifelong image restoration from unknown blended distortions. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 616–632. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_36
Liu, P., Zhang, H., Lian, W., Zuo, W.: Multi-level wavelet convolutional neural networks. IEEE Access 7, 74973–74985 (2019)
Lu, M., Chen, T., Liu, H., Ma, Z.: Learned image restoration for VVC intra coding. In: CVPR Workshops (2019)
Lu, Y., et al.: RTN: reinforced transformer network for coronary CT angiography vessel-level image quality assessment. arXiv preprint arXiv:2207.06177 (2022)
Luo, Z., Huang, H., Yu, L., Li, Y., Fan, H., Liu, S.: Deep constrained least squares for blind image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17642–17652 (2022)
Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings Eighth IEEE International Conference on Computer Vision, ICCV 2001, vol. 2, pp. 416–423. IEEE (2001)
Matsui, Y., et al.: Sketch-based manga retrieval using manga109 dataset. Multimed. Tools Appl. 76(20), 21811–21838 (2017)
Pang, Y., et al.: FAN: frequency aggregation network for real image super-resolution. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12537, pp. 468–483. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-67070-2_28
Pennebaker, W.B., Mitchell, J.L.: JPEG: Still Image Data Compression Standard. Springer Science & Business Media, New York (1992). https://link.springer.com/book/9780442012724
Rabbani, M., Joshi, R.: An overview of the JPEG 2000 still image compression standard. Signal Process. Image Commun. 17(1), 3–48 (2002)
Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)
Svoboda, P., Hradis, M., Barina, D., Zemcik, P.: Compression artifacts removal using convolutional neural networks. arXiv preprint arXiv:1605.00366 (2016)
Timofte, R., Agustsson, E., Van Gool, L., Yang, M.H., Zhang, L.: Ntire 2017 challenge on single image super-resolution: methods and results. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 114–125 (2017)
Wang, L., et al.: Unsupervised degradation representation learning for blind super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10581–10590 (2021)
Wang, X., Xie, L., Dong, C., Shan, Y.: Real-ESRGAN: training real-world blind super-resolution with pure synthetic data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1905–1914 (2021)
Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018)
Wang, Z., Liu, D., Chang, S., Ling, Q., Yang, Y., Huang, T.S.: D3: deep dual-domain based fast restoration of JPEG-compressed images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2764–2772 (2016)
Wei, P., et al.: AIM 2020 challenge on real image super-resolution: methods and results. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12537, pp. 392–422. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-67070-2_24
Wei, P., et al.: Component divide-and-conquer for real-world image super-resolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 101–117. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_7
Wu, Y., Wang, X., Li, G., Shan, Y.: AnimeSR: learning real-world super-resolution models for animation videos. arXiv preprint arXiv:2206.07038 (2022)
Wu, Y., Li, X., Zhang, Z., Jin, X., Chen, Z.: Learned block-based hybrid image compression. IEEE Trans. Circ. Syst. Video Technol. 32, 3978–3990 (2021)
Yang, R., Timofte, R., et al.: AIM 2022 challenge on super-resolution of compressed image and video: dataset, methods and results. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2022)
Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47
Zhang, K., Liang, J., Van Gool, L., Timofte, R.: Designing a practical degradation model for deep blind image super-resolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4791–4800 (2021)
Zhang, X., Yang, W., Hu, Y., Liu, J.: DMCNN: dual-domain multi-scale convolutional neural network for compression artifacts removal. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 390–394. IEEE (2018)
Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 294–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_18
Zheng, M., et al.: Progressive training of a two-stage framework for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1024–1031 (2022)
Acknowledgement
This work was supported in part by NSFC under Grant U1908209, 62021001 and the National Key Research and Development Program of China 2018AAA0101400.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, B., Li, X., Lu, Y., Liu, S., Feng, R., Chen, Z. (2023). HST: Hierarchical Swin Transformer for Compressed Image Super-Resolution. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13802. Springer, Cham. https://doi.org/10.1007/978-3-031-25063-7_41
Download citation
DOI: https://doi.org/10.1007/978-3-031-25063-7_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25062-0
Online ISBN: 978-3-031-25063-7
eBook Packages: Computer ScienceComputer Science (R0)