Plausibility Verification for 3D Object Detectors Using Energy-Based Optimization | SpringerLink
Skip to main content

Plausibility Verification for 3D Object Detectors Using Energy-Based Optimization

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13801))

Included in the following conference series:

Abstract

Environmental perception obtained via object detectors have no predictable safety layer encoded into their model schema, which creates the question of trustworthiness about the system’s prediction. As can be seen from recent adversarial attacks, most of the current object detection networks are vulnerable to input tampering, which in the real world could compromise the safety of autonomous vehicles. The problem would be amplified even more when uncertainty errors could not propagate into the submodules, if these are not a part of the end-to-end system design. To address these concerns, a parallel module which verifies the predictions of the object proposals coming out of Deep Neural Networks are required. This work aims to verify 3D object proposals from MonoRUn model by proposing a plausibility framework that leverages cross sensor streams to reduce false positives. The verification metric being proposed uses prior knowledge in the form of four different energy functions, each utilizing a certain prior to output an energy value leading to a plausibility justification for the hypothesis under consideration. We also employ a novel two-step schema to improve the optimization of the composite energy function representing the energy model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aeberhard, M., Paul, S., Kaempchen, N., Bertram, T.: Object existence probability fusion using dempster-shafer theory in a high-level sensor data fusion architecture, pp. 770–775. IEEE (2011). https://doi.org/10.1109/IVS.2011.5940430

  2. Blanco, J.L.: A tutorial on SE(3) transformation parameterizations and on-manifold optimization. Technical report, 012010, University of Malaga (2010). http://ingmec.ual.es/jlblanco/papers/jlblanco2010geometry3D_techrep.pdf

  3. Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: CVPR (2020)

    Google Scholar 

  4. Chang, A.X., et al.: Shapenet: an information-rich 3D model repository. CoRR abs/1512.03012 (2015). http://arxiv.org/abs/1512.03012

  5. Chen, H., Huang, Y., Tian, W., Gao, Z., Xiong, L.: Monorun: monocular 3D object detection by reconstruction and uncertainty propagation. CoRR abs/2103.12605 (2021). https://arxiv.org/abs/2103.12605

  6. Cofer, D., Amundson, I., Sattigeri, R., Passi, A.: Run-Time Assurance for Learning-Enabled Systems Run-Time Assurance for Learning-Enabled Systems (2020). https://doi.org/10.1007/978-3-030-55754-6

  7. Engelmann, F., Stückler, J., Leibe, B.: Joint object pose estimation and shape reconstruction in urban street scenes using 3D shape priors (2016). https://doi.org/10.1007/978-3-319-45886-1_18. https://github.com/VisualComputingInstitute/ShapePriors_GCPR16

  8. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The kitti vision benchmark suite. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  9. Geissler, F., Unnervik, A., Paulitsch, M.: A plausibility-based fault detection method for high-level fusion perception systems. https://doi.org/10.1109/OJITS.2020.3027146

  10. Gustafsson, F.K., Danelljan, M., Bhat, G., Schön, T.B.: Energy-based models for deep probabilistic regression. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 325–343. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_20

    Chapter  Google Scholar 

  11. Gustafsson, F.K., Danelljan, M., Schön, T.B.: Accurate 3D object detection using energy-based models. https://github.com/fregu856/ebms_3dod

  12. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, 22–29 October 2017, pp. 2980–2988. IEEE Computer Society (2017). https://doi.org/10.1109/ICCV.2017.322

  13. Hinton, G.E.: Products of experts, vol. 1, pp. 1–6 (1999)

    Google Scholar 

  14. Khesbak, M.S.: Depth camera and laser sensors plausibility evaluation for small size obstacle detection. In: 18th International Multi-Conference on Systems, Signals & Devices, SSD 2021, Monastir, Tunisia, 22–25 March 2021, pp. 625–631. IEEE (2021). https://doi.org/10.1109/SSD52085.2021.9429373

  15. LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., Huang, F.: A tutorial on energy-based learning. In: Bakir, G., Hofman, T., Schölkopf, B., Smola, A., Taskar, B. (eds.) Predicting Structured Data. MIT Press, Cambridge (2006)

    Google Scholar 

  16. Maag, K.: False negative reduction in video instance segmentation using uncertainty estimates. CoRR abs/2106.14474 (2021). https://arxiv.org/abs/2106.14474

  17. Nocedal, J., Wright, S.: Numerical Optimization (2006). https://doi.org/10.1007/978-0-387-40065-5

  18. Osadchy, M., Cun, Y.L., Miller, M.L.: Synergistic face detection and pose estimation with energy-based models (2006). https://doi.org/10.1007/11957959_10

  19. Prisacariu, V.A., Segal, A.V., Reid, I.: Simultaneous monocular 2D segmentation, 3D pose recovery and 3D reconstruction. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7724, pp. 593–606. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37331-2_45

    Chapter  Google Scholar 

  20. Rao, Q., Krüger, L., Dietmayer, K.: 3D shape reconstruction in traffic scenarios using monocular camera and lidar. In: Chen, C.-S., Lu, J., Ma, K.-K. (eds.) ACCV 2016. LNCS, vol. 10117, pp. 3–18. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54427-4_1

    Chapter  Google Scholar 

  21. Rottmann, M., Maag, K., Chan, R., Hüger, F., Schlicht, P., Gottschalk, H.: Detection of false positive and false negative samples in semantic segmentation. CoRR abs/1912.03673 (2019). http://arxiv.org/abs/1912.03673

  22. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    Book  MATH  Google Scholar 

  23. Von Rueden, L., et al.: Informed machine learning - a taxonomy and survey of integrating knowledge into learning systems. arXiv, pp. 1–20 (2019)

    Google Scholar 

  24. Wang, R., Yang, N., Stuckler, J., Cremers, D.: Directshape: direct photometric alignment of shape priors for visual vehicle pose and shape estimation (2020). https://doi.org/10.1109/icra40945.2020.9197095

  25. Wörmann, J., et al.: Knowledge augmented machine learning with applications in autonomous driving: a survey (2022). https://doi.org/10.48550/ARXIV.2205.04712. https://arxiv.org/abs/2205.04712

Download references

Acknowledgements

The research leading to these results is funded by the German Federal Ministry for Economic Affairs and Climate Action within the project “KI Wissen”. The authors would like to thank the consortium for the successful cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Vivekanandan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vivekanandan, A., Maier, N., Zöllner, J.M. (2023). Plausibility Verification for 3D Object Detectors Using Energy-Based Optimization. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13801. Springer, Cham. https://doi.org/10.1007/978-3-031-25056-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25056-9_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25055-2

  • Online ISBN: 978-3-031-25056-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics