Abstract
Multi-Access Edge Computing (MEC) based services are becoming very popular in research and innovation areas as there is a high expectation to solve many automation and security problems through wireless connections gathering streaming data that is processed at the edge or cloud layer of the network. Research efforts in this direction normally either stay at the theoretical level, or the heuristics are implemented on simulators that mainly cover an isolated part of the network architecture as experimenting real end-to-end scenarios implies the use of expensive infrastructure that is not normally available in research centres. This paper deals with a simulation framework developed for analysing MEC resource allocation algorithms performance covering the access network, edge and cloud infrastructure and the challenges we found during the process.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bréhon-Grataloup, L., Kacimi, R., Beylot, A.-L.: Mobile edge computing for V2X architectures and applications: a survey. Comput. Netw. 206, 108797 (2022). https://doi.org/10.1016/j.comnet.2022.108797
Saad, W., Bennis, M., Chen, M.: A vision of 6G wireless systems: applications, trends, technologies, and open research problems. IEEE Netw. 34(3), 134–142 (2020). https://doi.org/10.1109/MNET.001.1900287
ETSI GS MEC 003 V2.2.1 (2020–12): Multi-Access Edge Computing (MEC); Framework and Reference Architecture (2020)
Zhang, L., Jia, M., Wu J., Guo Q., Gu, X.: Joint task secure offloading and resource allocation for multi-MEC server to improve user QoE. In: 2021 IEEE/CIC International Conference on Communications in China, ICCC, pp. 103–108 (2021). https://doi.org/10.1109/ICCC52777.2021.9580302
Doan T.V., Fan Z., Nguyen G.T., Salah H., You D., Fitzek, F.H.P.: Follow me, if you can: a framework for seamless migration in mobile edge cloud. In: IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS, pp. 1178–1183 (2020). https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162992
Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S., Sabella, D.: On multi-access edge computing: a survey of the emerging 5G network edge cloud architecture and orchestration. IEEE Commun. Surv. Tutor. 19(3), 1657–1681 (2017). https://doi.org/10.1109/COMST.2017.2705720
Alam, M., Rufino, J., Ferreira, J., Ahmed, S.H., Shah, N., Chen, Y.: Orchestration of microservices for iot using docker and edge computing. IEEE Commun. Mag. 56(9), 118–123 (2018). https://doi.org/10.1109/MCOM.2018.1701233
Guo, Y., Qiang D., Wang, S.: Service orchestration for integrating edge computing and 5G network: state of the art and challenges. In: 2020 IEEE World Congress on Services (SERVICES), pp. 55–60. IEEE (2020). https://doi.org/10.1109/SERVICES48979.2020.00026
Hong, Ch., Varghese, B.: Resource management in fog/edge computing: a survey on architectures, infrastructure, and algorithms. ACM Comput. Surv. 52(5), 1–37 (2019). https://doi.org/10.1145/3326066
Mijuskovic, A., Chiumento, A., Bemthuis, R., Aldea, A., Havinga, P.: Resource management techniques for cloud/fog and edge computing: an evaluation framework and classification. Sensors 21(5), 1832 (2021). https://doi.org/10.3390/s21051832
Fan, Y., Wang, L., Wu, W., Du, D.: Cloud/edge computing resource allocation and pricing for mobile blockchain: an iterative greedy and search approach. IEEE Trans. Comput. Soc. Syst. 8(2), 451–463 (2021). https://doi.org/10.1109/TCSS.2021.3049152
Roostaei, R., Dabiri, Z., Movahedi, Z.: A game-theoretic joint optimal pricing and resource allocation for mobile edge computing in NOMA-based 5G networks and beyond. Comput. Netw. 198, 108352 (2021). https://doi.org/10.1016/j.comnet.2021.108352
Dong, R., She, Ch., Hardjawana, W., Li, Y., Vucetic, B.: Deep learning for hybrid 5G services in mobile edge computing systems: learn from a digital twin. IEEE Trans. Wirel. Commun. 18(10), 4692–4707 (2019). https://doi.org/10.1109/TWC.2019.2927312
Wang, S., Xu, J., Zhang, N., Liu, Y.: A survey on service migration in mobile edge computing. IEEE Access 6, 23511–23528 (2018). https://doi.org/10.1109/ACCESS.2018.2828102
Wu, Ch., Peng, Q., Xia, Y., Ma, Y., Zheng, W., Xie, H., et al.: Online user allocation in mobile edge computing environments: a decentralized reactive approach. J. Syst. Archit. 113, 101904 (2021). https://doi.org/10.1016/j.sysarc.2020.101904
Slamnik-Krijetorac, N., Carvalho de Resende, H.C., Donato, C., Latr, S., Riggio, R., Marquez-Barja, J.: Leveraging mobile edge computing to improve vehicular communications. In: 2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC), pp. 1–4. IEEE (2020). https://doi.org/10.1109/CCNC46108.2020.9045698
Al-Ansi, A., Al-Ansi, A.M., Muthanna, A., Elgendy, I.A., Koucheryavy, A.: Survey on intelligence edge computing in 6G: characteristics, challenges, potential use cases, and market drivers. Future Internet 13(5), 118 (2021). https://doi.org/10.3390/fi13050118
Svorobej, S., Takako Endo, P., Bendechache, M., Filelis-Papadopoulos, C., Giannoutakis, K.M., Gravvanis, G.A., et al.: Simulating fog and edge computing scenarios: an overview and research challenges. Future Internet 11(3), 55 (2019). https://doi.org/10.3390/fi11030055
Bendechache, M., Svorobej, S., Takako Endo, P., Lynn, T.: Simulating resource management across the cloud-to-thing continuum: a survey and future directions. Future Internet 12(6), 95 (2020). https://doi.org/10.3390/fi12060095
Qayyum, T., Malik, A.W., Khattak, M.A.K., Khalid, O., Khan, S.U.: FogNetSim++: a toolkit for modeling and simulation of distributed fog environment. IEEE Access 6, 63570–63583 (2018). https://doi.org/10.1109/ACCESS.2018.2877696
Tang, W., Zhao, X., Rafique, W., Qi, L., Dou, W., Ni, Q.: An offloading method using decentralized P2P-enabled mobile edge servers in edge computing. J. Syst. Archit. 94, 1–13 (2019). https://doi.org/10.1016/j.sysarc.2019.02.001
Feng, J., Yu, F.R., Pei, Q., Chu, X., Du, J., Zhu, Li.: Cooperative computation offloading and resource allocation for blockchain-enabled mobile-edge computing: a deep reinforcement learning approach. IEEE Internet Things J. 7(7), 6214–6228 (2019). https://doi.org/10.1109/JIOT.2019.2961707
Filiposka, S., Juiz, C.: Community-based complex cloud data center. Phys. A: Stat. Mech. Appl. 419, 356–372 (2015). https://doi.org/10.1016/j.physa.2014.10.017
Filiposka, S., Mishev, A., Gilly, K.: Community-based allocation and migration strategies for fog computing. In: 2018 IEEE Wireless Communications and Networking Conference (WCNC). https://doi.org/10.1109/WCNC.2018.8377095
Filiposka, S., Mishev, A., Gilly, K.: Mobile-aware dynamic resource management for edge computing. Trans. Emerg. Telecommun. Technol. 30(6), e3626 (2019). https://doi.org/10.1002/ett.3626
Gilly, K., Filiposka, S., Alcaraz, S.: Predictive migration performance in vehicular edge computing environments. Appl. Sci. 11(3), 944 (2021). https://doi.org/10.3390/app11030944
Abo-Zahhad, M., Sabor, N., Sasaki, S., Ahmed, S.M.: A centralized immune-voronoi deployment algorithm for coverage maximization and energy conservation in mobile wireless sensor networks. Inf. Fusion 30, 36–51 (2016). https://doi.org/10.1016/j.inffus.2015.11.005
Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.: Cloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw.: Pract. Experience 41(1), 23–50 (2010). https://doi.org/10.1002/spe.995
Varga, A. Hornig, R.: An overview of the OMNeT++ simulation environment. In: 1st International Conference on Simulation Tools and Techniques for Communications, Networks and Systems Workshops (Simutools), pp. 1–10 (2008). https://doi.org/10.5555/1416222.1416290
Deinlein, T., German, R, Djanatliev, A.: 5G-Sim-V2I/N: towards a simulation framework for the evaluation of 5G V2I/V2N use cases. In: 2020 European Conference on Networks and Communications (EuCNC) (2020). https://doi.org/10.1109/EuCNC48522.2020.9200949
Alvarez-Lopez, P., Behrisch, M., Bieker-Walz, L., Erdmann, J., Flötteröd, J.P., Hilbrich, R. et al.: Microscopic traffic simulation using SUMO. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC) (2018). https://doi.org/10.1109/ITSC.2018.8569938
Cinque, E., Valentini, F., Persia, A., Chiocchio, S., Santucci, F., Pratesi, M.: V2X communication technologies and service requirements for connected and autonomous driving. In: 2020 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE), pp. 1–6. IEEE (2020). https://doi.org/10.23919/AEITAUTOMOTIVE50086.2020.9307388
Edge simulation github repository. mobile edge computing simulation in 5G environment (2022). https://github.com/EdgeSimulation. Accessed 1 July 2022
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bernad, C., Roig, P.J., Alcaraz, S., Gilly, K., Filiposka, S. (2023). Edge Performance Analysis Challenges in Mobile Simulation Scenarios. In: Gilly, K., Thomas, N. (eds) Computer Performance Engineering. EPEW 2022. Lecture Notes in Computer Science, vol 13659. Springer, Cham. https://doi.org/10.1007/978-3-031-25049-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-25049-1_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25048-4
Online ISBN: 978-3-031-25049-1
eBook Packages: Computer ScienceComputer Science (R0)