Abstract
This work tackles the problem of unsupervised modeling and extraction of the main contrastive sentential reasons conveyed by divergent viewpoints on polarized issues. It proposes a pipeline approach centered around the detection and clustering of phrases, assimilated to argument facets using a novel Phrase Author Interaction Topic-Viewpoint model. The evaluation is based on the informativeness, the relevance and the clustering accuracy of extracted reasons. The pipeline approach shows a significant improvement over state-of-the-art methods in contrastive summarization on online debate datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abbott, R., Ecker, B., Anand, P., Walker, M.A.: Internet argument corpus 2.0: an SQL schema for dialogic social media and the corpora to go with it. In: LREC (2016)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)
Boltužić, F., Šnajder, J.: Back up your stance: recognizing arguments in online discussions. In: Proceedings of the First Workshop on Argumentation Mining, Baltimore, Maryland, pp. 49–58. Association for Computational Linguistics (2014). https://www.aclweb.org/anthology/W14-2107
Boltužić, F., Šnajder, J.: Identifying prominent arguments in online debates using semantic textual similarity. In: Proceedings of the 2nd Workshop on Argumentation Mining, Denver, CO, pp. 110–115. Association for Computational Linguistics (2015). https://www.aclweb.org/anthology/W15-0514
Bouma, G.: Normalized (pointwise) mutual information in collocation extraction. In: Proceedings of GSCL, pp. 31–40 (2009)
El-Kishky, A., Song, Y., Wang, C., Voss, C.R., Han, J.: Scalable topical phrase mining from text corpora. Proc. VLDB Endow. 8(3), 305–316 (2014). https://doi.org/10.14778/2735508.2735519
Erkan, G., Radev, D.R.: LexRank: graph-based lexical centrality as salience in text summarization. J. Artif. Intell. Res. (JAIR) 22(1), 457–479 (2004)
Habernal, I., Gurevych, I.: Argumentation mining in user-generated web discourse. Comput. Linguist. 43(1), 125–179 (2017)
Hasan, K.S., Ng, V.: Why are you taking this stance? Identifying and classifying reasons in ideological debates. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, pp. 751–762. Association for Computational Linguistics (2014). https://www.aclweb.org/anthology/D14-1083
Li, H., Mukherjee, A., Si, J., Liu, B.: Extracting verb expressions implying negative opinions. In: Proceedings of the AAAI Conference on Artificial Intelligence (2015). https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9398
Lin, C.Y.: Rouge: a package for automatic evaluation of summaries. In: Marie-Francine Moens, S.S. (ed.) Text Summarization Branches Out: Proceedings of the ACL-04 Workshop, Barcelona, Spain, pp. 74–81. Association for Computational Linguistics (2004)
Misra, A., Anand, P., Fox Tree, J.E., Walker, M.: Using summarization to discover argument facets in online idealogical dialog. In: Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Denver, Colorado, pp. 430–440. Association for Computational Linguistics (2015). https://www.aclweb.org/anthology/N15-1046
Misra, A., Oraby, S., Tandon, S., Ts, S., Anand, P., Walker, M.A.: Summarizing dialogic arguments from social media. In: Proceedings of the 21th Workshop on the Semantics and Pragmatics of Dialogue (SemDial 2017), pp. 126–136 (2017)
Mohammad, S.M., Sobhani, P., Kiritchenko, S.: Stance and sentiment in tweets. ACM Trans. Internet Technol. 17(3), 26:1–26:23 (2017). https://doi.org/10.1145/3003433
Park, J., Cardie, C.: Identifying appropriate support for propositions in online user comments. In: Proceedings of the First Workshop on Argumentation Mining, Baltimore, Maryland, pp. 29–38. Association for Computational Linguistics (2014). https://www.aclweb.org/anthology/W14-2105
Paul, M., Zhai, C., Girju, R.: Summarizing contrastive viewpoints in opinionated text. In: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, Cambridge, MA, pp. 66–76. Association for Computational Linguistics (2010). https://www.aclweb.org/anthology/D10-1007
Qiu, M., Jiang, J.: A latent variable model for viewpoint discovery from threaded forum posts. In: Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Atlanta, Georgia, pp. 1031–1040. Association for Computational Linguistics (2013). https://www.aclweb.org/anthology/N13-1123
Stab, C., Gurevych, I.: Identifying argumentative discourse structures in persuasive essays. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, pp. 46–56. Association for Computational Linguistics (2014). https://www.aclweb.org/anthology/D14-1006
Swanson, R., Ecker, B., Walker, M.: Argument mining: extracting arguments from online dialogue. In: Proceedings of the 16th Annual Meeting of the Special Interest Group on Discourse and Dialogue, Prague, Czech Republic, pp. 217–226. Association for Computational Linguistics (2015). https://aclweb.org/anthology/W15-4631
Thonet, T., Cabanac, G., Boughanem, M., Pinel-Sauvagnat, K.: VODUM: a topic model unifying viewpoint, topic and opinion discovery. In: Ferro, N., et al. (eds.) ECIR 2016. LNCS, vol. 9626, pp. 533–545. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30671-1_39
Trabelsi, A., Zaiane, O.R.: Finding arguing expressions of divergent viewpoints in online debates. In: Proceedings of the 5th Workshop on Language Analysis for Social Media (LASM), Gothenburg, Sweden, pp. 35–43. Association for Computational Linguistics (2014). https://www.aclweb.org/anthology/W14-1305
Trabelsi, A., Zaïane, O.R.: A joint topic viewpoint model for contention analysis. In: Métais, E., Roche, M., Teisseire, M. (eds.) Natural Language Processing and Information Systems, pp. 114–125. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07983-7_16
Trabelsi, A., Zaiane, O.R.: Mining contentious documents using an unsupervised topic model based approach. In: Proceedings of the 2014 IEEE International Conference on Data Mining, pp. 550–559 (2014)
Trabelsi, A., Zaïane, O.R.: Extraction and clustering of arguing expressions in contentious text. Data Knowl. Eng. 100, 226–239 (2015)
Trabelsi, A., Zaïane, O.R.: Mining contentious documents. Knowl. Inf. Syst. 48(3), 537–560 (2016)
Trabelsi, A., Zaïane, O.R.: Unsupervised model for topic viewpoint discovery in online debates leveraging author interactions. In: Proceedings of the AAAI International Conference on Web and Social Media (ICWSM), Stanford, California, pp. 425–433. Association for the Advancement of Artificial Intelligence (2018)
Vilares, D., He, Y.: Detecting perspectives in political debates. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, pp. 1573–1582. Association for Computational Linguistics (2017). https://www.aclweb.org/anthology/D17-1165
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 Springer Nature Switzerland AG
About this paper
Cite this paper
Trabelsi, A., Zaïane, O.R. (2023). Contrastive Reasons Detection and Clustering from Online Polarized Debates. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2019. Lecture Notes in Computer Science, vol 13451. Springer, Cham. https://doi.org/10.1007/978-3-031-24337-0_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-24337-0_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-24336-3
Online ISBN: 978-3-031-24337-0
eBook Packages: Computer ScienceComputer Science (R0)