Char-RNN and Active Learning for Hashtag Segmentation | SpringerLink
Skip to main content

Char-RNN and Active Learning for Hashtag Segmentation

  • Conference paper
  • First Online:
Computational Linguistics and Intelligent Text Processing (CICLing 2019)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13451))

  • 424 Accesses

Abstract

We explore the abilities of character recurrent neural network (char-RNN) for hashtag segmentation. Our approach to the task is the following: we generate synthetic training dataset according to frequent n-grams that satisfy predefined morpho-syntactic patterns to avoid any manual annotation. The active learning strategy limits the training dataset and selects informative training subset. The approach does not require any language-specific settings and is compared for two languages, which differ in inflection degree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://corpus.byu.edu/bnc/.

  2. 2.

    https://corpus.byu.edu/coca/.

  3. 3.

    The test data is available at: https://github.com/glushkovato/hashtag_segmentation.

  4. 4.

    http://www.grantjenks.com/docs/wordsegment/.

References

  1. Matthews, A., Schlinger, E., Lavie, A., Dyer, C.: Synthesizing compound words for machine translation. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1085–1094 (2016)

    Google Scholar 

  2. Riedl, M., Biemann, C.: Unsupervised compound splitting with distributional semantics rivals supervised methods. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 617–622 (2016)

    Google Scholar 

  3. Koehn, P., Knight, K.: Empirical methods for compound splitting. In: Proceedings of the Tenth Conference on European Chapter of the Association for Computational Linguistics, vol. 1, pp. 187–193 (2003)

    Google Scholar 

  4. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 6000–6010 (2017)

    Google Scholar 

  5. Chung, J., Cho, K., Bengio, Y.: A character-level decoder without explicit segmentation for neural machine translation (2016)

    Google Scholar 

  6. Alberti, C., et al.: SyntaxNet models for the CoNLL 2017 shared task (2017)

    Google Scholar 

  7. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text classification. In: EACL 2017, p. 427 (2017)

    Google Scholar 

  8. Santos, C.D., Zadrozny, B.: Learning character-level representations for part-of-speech tagging. In: Proceedings of the 31st International Conference on Machine Learning, ICML 2014, pp. 1818–1826 (2014)

    Google Scholar 

  9. Samih, Y., et al.: A neural architecture for dialectal Arabic segmentation. In: Proceedings of the Third Arabic Natural Language Processing Workshop, pp. 46–54 (2017)

    Google Scholar 

  10. Sun, Z., Shen, G., Deng, Z.: A gap-based framework for Chinese word segmentation via very deep convolutional networks (2017)

    Google Scholar 

  11. Cai, D., Zhao, H., Zhang, Z., Xin, Y., Wu, Y., Huang, F.: Fast and accurate neural word segmentation for Chinese (2017)

    Google Scholar 

  12. Zhang, Q., Liu, X., Fu, J.: Neural networks incorporating dictionaries for Chinese word segmentation (2018)

    Google Scholar 

  13. Cai, D., Zhao, H.: Neural word segmentation learning for Chinese. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 409–420 (2016)

    Google Scholar 

  14. Ma, X., Hovy, E.: End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF (2016)

    Google Scholar 

  15. Weston, J., et al.: Towards AI-complete question answering: a set of prerequisite toy tasks (2015)

    Google Scholar 

  16. Utama, P., et al.: An end-to-end neural natural language interface for databases (2018)

    Google Scholar 

  17. Schohn, G., Cohn, D.: Less is more: active learning with support vector machines. In: ICML, pp. 839–846 (2000)

    Google Scholar 

  18. Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. J. Mach. Learn. Res. 2, 45–66 (2001)

    MATH  Google Scholar 

  19. Shen, Y., Yun, H., Lipton, Z.C., Kronrod, Y., Anandkumar, A.: Deep active learning for named entity recognition (2017)

    Google Scholar 

  20. Zhang, Y., Lease, M., Wallace, B.C.: Active discriminative text representation learning. In: AAAI, pp. 3386–3392 (2017)

    Google Scholar 

  21. Reuter, J., Pereira-Martins, J., Kalita, J.: Segmenting Twitter hashtags. Int. J. Nat. Lang. Comput. 5, 23–36 (2016)

    Article  Google Scholar 

  22. Berardi, G., Esuli, A., Marcheggiani, D., Sebastiani, F.: ISTI@ TREC Microblog Track 2011: Exploring the Use of Hashtag Segmentation and Text Quality Ranking. TREC (2011)

    Google Scholar 

  23. Ounis, I., Macdonald, C., Lin, J., Soboroff, I.: Overview of the TREC-2011 microblog track. In: Proceedings of the 20th Text REtrieval Conference (TREC 2011) (2011)

    Google Scholar 

  24. Bansal, P., Bansal, R., Varma, V.: Towards deep semantic analysis of hashtags. In: Hanbury, A., Kazai, G., Rauber, A., Fuhr, N. (eds.) ECIR 2015. LNCS, vol. 9022, pp. 453–464. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16354-3_50

    Chapter  Google Scholar 

  25. Declerck, T., Lendvai, P.: Processing and normalizing hashtags. In: Proceedings of the International Conference Recent Advances in Natural Language Processing, pp. 104–109 (2015)

    Google Scholar 

  26. Akhtar, Md.S., Sawant, P., Ekbal, A., Pawar, J., Bhattacharyya, P.: IITP at EmoInt-2017: measuring intensity of emotions using sentence embeddings and optimized features. In: Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pp. 212–218 (2017)

    Google Scholar 

  27. Park, J.H., Xu, P., Fung, P.: PlusEmo2Vec at SemEval-2018 Task 1: Exploiting emotion knowledge from emoji and# hashtags (2018)

    Google Scholar 

  28. Shao, Y., Hardmeier, C., Nivre, J.: Universal word segmentation: implementation and interpretation. Trans. Assoc. Computat. Linguist. 6, 421–435 (2018)

    Article  Google Scholar 

  29. Peng, F., Feng, F., McCallum, A.: Chinese segmentation and new word detection using conditional random field. In: Proceedings of the 20th International Conference on Computational Linguistics, p. 562 (2004)

    Google Scholar 

  30. Xue, N.: Chinese word segmentation as character tagging. Int. J. Comput. Linguist. Chin. Lang. Process. 8(1), 29–48 (2003). Special Issue on Word Formation and Chinese Language Processing

    Google Scholar 

  31. Norvig, P.: Natural language corpus data. Beautiful Data 219–242 (2009)

    Google Scholar 

Download references

Acknowledgements

The paper was prepared within the framework of the HSE University Basic Research Program and funded by the Russian Academic Excellence Project ’5-100’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Artemova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Glushkova, T., Artemova, E. (2023). Char-RNN and Active Learning for Hashtag Segmentation. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2019. Lecture Notes in Computer Science, vol 13451. Springer, Cham. https://doi.org/10.1007/978-3-031-24337-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24337-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24336-3

  • Online ISBN: 978-3-031-24337-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics