Generic Aggregation Model for Reconfigurable Holonic Control Architecture – The GARCIA Framework | SpringerLink
Skip to main content

Generic Aggregation Model for Reconfigurable Holonic Control Architecture – The GARCIA Framework

  • Conference paper
  • First Online:
Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future (SOHOMA 2022)

Abstract

During the last twenty years, many innovative control architectures of manufacturing systems have been developed and promoted in literature. One of the main attributes, in correlation with the aims of Industry 4.0 paradigm, is to define control architectures where both the actors and the interactions between these actors could cope with an evolution of the environment. To do so, dynamic architectures are being recently developed, where the hierarchy of decision can be jeopardized at any time during the normal behaviour of the system. However, the deployment of such architectures faces major software development issues, that a proper initial modelling could help solving. The objective of this paper is to exhibit good practices in the modelling of dynamic architectures in order to enable an automatic reconfiguration when needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 25167
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 31459
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 31459
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zezulka, F., Marcon, P., Vesely, I., Sajdl, O.: Industry 4.0 – an Introduction in the phenomenon. IFAC-PapersOnLine 49, 8–12 (2016). https://doi.org/10.1016/j.ifacol.2016.12.002

    Article  Google Scholar 

  2. Barbosa, J., Leitao, P., Trentesaux, D., Colombo, A.W., Karnouskos, S.: Cross benefits from cyber-physical systems and intelligent products for future smart industries. In: 2016 IEEE International Conference on Industrial Informatics (INDIN), pp. 504–509 (2016)

    Google Scholar 

  3. Valckenaers, P.: Perspective on holonic manufacturing systems: PROSA becomes ARTI. Comput. Ind. 120, 103226 (2020). https://doi.org/10.1016/j.compind.2020.103226

    Article  Google Scholar 

  4. Derigent, W., Cardin, O., Trentesaux, D.: Industry 4.0: contributions of holonic manufacturing control architectures and future challenges. J. Intell. Manuf. 32(7), 1797–1818 (2020). https://doi.org/10.1007/s10845-020-01532-x

    Article  Google Scholar 

  5. Bussmann, S., Sieverding, J.: Holonic control of an engine assembly plant: an industrial evaluation. In: 2001 IEEE International Conference on Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace (Cat. No. 01CH37236), pp. 169–174 (2001)

    Google Scholar 

  6. Le Mortellec, A., Clarhaut, J., Sallez, Y., Berger, T., Trentesaux, D.: Embedded holonic fault diagnosis of complex transportation systems. Eng. Appl. Artif. Intell. 26, 227–240 (2013). https://doi.org/10.1016/j.engappai.2012.09.008

    Article  Google Scholar 

  7. Borangiu, T., Răileanu, S., Oltean, E.V., Silişteanu, A.: Holonic hybrid supervised control of semi-continuous radiopharmaceutical production processes. In: Kondratenko, Y.P., Chikrii, A.A., Gubarev, V.F., Kacprzyk, J. (eds.) Advanced Control Techniques in Complex Engineering Systems: Theory and Applications. SSDC, vol. 203, pp. 229–258. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21927-7_11

    Chapter  Google Scholar 

  8. Pujo, P., Broissin, N., Ounnar, F.: PROSIS: an isoarchic structure for HMS control. Eng. Appl. Art. Intell. 22, 1034–1045 (2009). https://doi.org/10.1016/j.engappai.2009.01.011

    Article  Google Scholar 

  9. Adam, E., Zambrano, G., Pach, C., Berger, T., Trentesaux, D.: Myopic Behaviour in holonic multiagent systems for distributed control of FMS. In: Corchado, J.M., Pérez, J.B., Hallenborg, K., Golinska, P., Corchuelo, R. (eds.) Trends in Practical Applications of Agents and Multiagent Systems, pp. 91–98. Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19931-8_12

    Chapter  Google Scholar 

  10. Zambrano Rey, G., Bonte, T., Prabhu, V., Trentesaux, D.: Reducing myopic behaviour in FMS control: a semi-heterarchical simulation–optimization approach. Simul. Model. Pract. Theor. 46, 53–75 (2014). https://doi.org/10.1016/j.simpat.2014.01.005

    Article  Google Scholar 

  11. Antzoulatos, N., Castro, E., Scrimieri, D., Ratchev, S.: A multi-agent architecture for plug and produce on an industrial assembly platform. Prod. Eng. Res. Devel. 8(6), 773–781 (2014). https://doi.org/10.1007/s11740-014-0571-x

    Article  Google Scholar 

  12. Cardin, O., Derigent, W., Trentesaux, D.: Evolution of holonic control architectures towards Industry 4.0: a short overview. IFAC-PapersOnLine 51, 1243–1248 (2018). https://doi.org/10.1016/j.ifacol.2018.08.420

    Article  Google Scholar 

  13. Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., Peeters, P.: Reference architecture for holonic manufacturing systems: PROSA. Comput. Ind. 37, 255–274 (1998). https://doi.org/10.1016/S0166-3615(98)00102-X

    Article  Google Scholar 

  14. Cardin, O., Trentesaux, D., Thomas, A., Castagna, P., Berger, T., Bril El-Haouzi, H.: Coupling predictive scheduling and reactive control in manufacturing hybrid control architectures: state of the art and future challenges. J. Intell. Manuf. 28(7), 1503–1517 (2015). https://doi.org/10.1007/s10845-015-1139-0

    Article  Google Scholar 

  15. Jimenez, J.F., Bekrar, A., Zambrano-Rey, G., Trentesaux, D., Leitão, P.: Pollux: a dynamic hybrid control architecture for flexible job shop systems. Int. J. Prod. Res. 55, 4229–4247 (2017). https://doi.org/10.1080/00207543.2016.1218087

    Article  Google Scholar 

  16. Pach, C., Berger, T., Bonte, T., Trentesaux, D.: ORCA-FMS: a dynamic architecture for the optimized and reactive control of flexible manufacturing scheduling. Comput. Ind. 65, 706–720 (2014). https://doi.org/10.1016/j.compind.2014.02.005

    Article  Google Scholar 

  17. Borangiu, T., Răileanu, S., Berger, T., Trentesaux, D.: Switching mode control strategy in manufacturing execution systems. Int. J. Prod. Res. (2015). https://doi.org/10.1080/00207543.2014.935825

    Article  Google Scholar 

  18. Barbosa, J., Leitão, P., Adam, E., Trentesaux, D.: Dynamic self-organization in holonic multi-agent manufacturing systems: the ADACOR evolution. Comput. Ind. 66, 99–111 (2015). https://doi.org/10.1016/j.compind.2014.10.011

    Article  Google Scholar 

  19. André, P., Cardin, O.: Aggregation patterns in holonic manufacturing systems. In: Borangiu, T., Trentesaux, D., Leitão, P., Cardin, O., Joblot, L. (eds.) Service Oriented, Holonic and Multi-agent Manufacturing Systems for Industry of the Future: Proceedings of SOHOMA 2021, pp. 3–15. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99108-1_1

    Chapter  Google Scholar 

  20. André, P., Ardourel, G., Messabihi, M.: Component service promotion: contracts, mechanisms and safety. In: Barbosa, L.S., Lumpe, M. (eds.) FACS 2010. LNCS, vol. 6921, pp. 145–162. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27269-1_9

    Chapter  Google Scholar 

  21. André, P., Azzi, F., Cardin, O.: Heterogeneous communication middleware for digital twin based cyber manufacturing systems. In: Borangiu, T., Trentesaux, D., Leitão, P., Giret Boggino, A., Botti, V. (eds.) SOHOMA 2019. SCI, vol. 853, pp. 146–157. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-27477-1_11

    Chapter  Google Scholar 

Download references

Acknowledgments

Authors thank financial support from the French National Research Agency (ANR) under the McBIM project, grant number ANR-17-CE10-0014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Derigent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Derigent, W., David, M., André, P., Cardin, O. (2023). Generic Aggregation Model for Reconfigurable Holonic Control Architecture – The GARCIA Framework. In: Borangiu, T., Trentesaux, D., Leitão, P. (eds) Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future. SOHOMA 2022. Studies in Computational Intelligence, vol 1083. Springer, Cham. https://doi.org/10.1007/978-3-031-24291-5_32

Download citation

Publish with us

Policies and ethics