An Interactive Buoyancy Model for Procedural Animation and Rendering | SpringerLink
Skip to main content

An Interactive Buoyancy Model for Procedural Animation and Rendering

  • Conference paper
  • First Online:
Soft Computing Applications (SOFA 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1438))

Included in the following conference series:

  • 177 Accesses

Abstract

According to classic physics, any solid object submerged in a fluid medium receives an buoyancy force equal to the weight of the fluid volume displaced by the submerged portion of the object. Even though there are solutions to simulate this phenomena, real-time buoyancy simulation models are an active research topic in Computer Graphics. In this paper, we present a new real-time method to simulate fluid-to-solid dynamics. The solution is competent for a broad generality of use cases. The technique is suitable to be implemented with GPGPU technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 20591
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 25739
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdulghany, A.R.: Generalization of parallel axis theorem for rotational inertia. Am. J. Phys. 85(10), 791–795 (2017). https://doi.org/10.1119/1.4994835

    Article  Google Scholar 

  2. Akbay, M., Nobles, N., Zordan, V., Shinar, T.: An extended partitioned method for conservative solid-fluid coupling. ACM Trans. Graph. 37(4), 86:1–86:12 (2018). https://doi.org/10.1145/3197517.3201345. http://doi.acm.org/10.1145/3197517.3201345

  3. Akinci, N., Ihmsen, M., Akinci, G., Solenthaler, B., Teschner, M.: Versatile rigid-fluid coupling for incompressible SPH. ACM Trans. Graph. 31(4), 62:1–62:8 (2012). https://doi.org/10.1145/2185520.2185558. http://doi.acm.org/10.1145/2185520.2185558

  4. Bächer, M., Bickel, B., Whiting, E., Sorkine-Hornung, O.: Spin-it: optimizing moment of inertia for spinnable objects. Commun. ACM 60(8), 92–99 (2017). https://doi.org/10.1145/3068766. http://doi.acm.org/10.1145/3068766

  5. Bajo, J.M., Delrieux, C., Patow, G.: Physically inspired technique for modeling wet absorbent materials. Vis. Comput. 37(8), 2053–2068 (2020). https://doi.org/10.1007/s00371-020-01963-w

    Article  Google Scholar 

  6. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2000). https://doi.org/10.1017/CBO9780511800955

  7. Batty, C., Bertails, F., Bridson, R.: A fast variational framework for accurate solid-fluid coupling. ACM Trans. Graph. 26(3), 100 (2007). http://doi.acm.org/10.1145/1276377.1276502

  8. Bridson, R.: Fluid Simulation for Computer Graphics, 2nd edn. Taylor & Francis (2015). https://books.google.es/books?id=7MySoAEACAAJ

  9. Carlson, M., Mucha, P.J., Turk, G.: Rigid fluid: animating the interplay between rigid bodies and fluid. In: ACM SIGGRAPH 2004 Papers, SIGGRAPH 2004, pp. 377–384. ACM, New York (2004). https://doi.org/10.1145/1186562.1015733. http://doi.acm.org/10.1145/1186562.1015733

  10. Da, F., Hahn, D., Batty, C., Wojtan, C., Grinspun, E.: Surface-only liquids. ACM Trans. Graph. 35(4), 78:1–78:12 (2016). https://doi.org/10.1145/2897824.2925899. http://doi.acm.org/10.1145/2897824.2925899

  11. Fei, Y.R., Batty, C., Grinspun, E., Zheng, C.: A multi-scale model for simulating liquid-fabric interactions. ACM Trans. Graph. 37(4), 51:1–51:16 (2018). https://doi.org/10.1145/3197517.3201392. http://doi.acm.org/10.1145/3197517.3201392

  12. Gonzalez-Ochoa, C.: Advances in real-time rendering in games: rendering rapids in uncharted 4. ACM SIGGRAPH 2016 courses. In: SIGGRAPH 2016: ACM SIGGRAPH 2016 Courses. ACM, New York (2016)

    Google Scholar 

  13. Guendelman, E., Selle, A., Losasso, F., Fedkiw, R.: Coupling water and smoke to thin deformable and rigid shells. ACM Trans. Graph. 24(3), 973–981 (2005). https://doi.org/10.1145/1073204.1073299. http://doi.acm.org/10.1145/1073204.1073299

  14. Haas, A.E., Verschoyle, T.: Introduction to Theoretical Physics, 2nd edn. Constable & Company Ltd., London (1928)

    Google Scholar 

  15. Jeschke, S., Skřivan, T., Müller-Fischer, M., Chentanez, N., Macklin, M., Wojtan, C.: Water surface wavelets. ACM Trans. Graph. 37(4), 94:1–94:13 (2018). https://doi.org/10.1145/3197517.3201336. http://doi.acm.org/10.1145/3197517.3201336

  16. Lenaerts, T., Adams, B., Dutré, P.: Porous flow in particle-based fluid simulations. ACM Trans. Graph. 27(3), 49:1–49:8 (2008). https://doi.org/10.1145/1360612.1360648. http://doi.acm.org/10.1145/1360612.1360648

  17. Lu, W., Jin, N., Fedkiw, R.: Two-way coupling of fluids to reduced deformable bodies. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2016, pp. 67–76. Eurographics Association, Goslar Germany, Germany (2016). http://dl.acm.org/citation.cfm?id=2982818.2982829

  18. Muskat, M., Wyckoff, R.: The Flow of Homogeneous Fluids Through Porous Media. International Series in Physics. McGraw-Hill Book Company, Incorporated (1937)

    Google Scholar 

  19. Patkar, S., Chaudhuri, P.: Wetting of porous solids. IEEE Trans. Vis. Comput. Graph. 19(9), 1592–1604 (2013). https://doi.org/10.1109/TVCG.2013.8

  20. Robinson-Mosher, A., English, R.E., Fedkiw, R.: Accurate tangential velocities for solid fluid coupling. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2009, pp. 227–236. ACM, New York (2009). https://doi.org/10.1145/1599470.1599500. http://doi.acm.org/10.1145/1599470.1599500

  21. Robinson-Mosher, A., Shinar, T., Gretarsson, J., Su, J., Fedkiw, R.: Two-way coupling of fluids to rigid and deformable solids and shells. ACM Trans. Graph. 27(3), 46:1–46:9 (2008). https://doi.org/10.1145/1360612.1360645. http://doi.acm.org/10.1145/1360612.1360645

  22. Yaz, I.O., Loriot, S.: Triangulated surface mesh segmentation. In: CGAL User and Reference Manual, 4.13 edn. CGAL Editorial Board (2018). https://doc.cgal.org/4.13/Manual/packages.html#PkgSurfaceSegmentationSummary

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Miguel Bajo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bajo, J.M., Patow, G., Delrieux, C. (2023). An Interactive Buoyancy Model for Procedural Animation and Rendering. In: Balas, V.E., Jain, L.C., Balas, M.M., Baleanu, D. (eds) Soft Computing Applications. SOFA 2020. Advances in Intelligent Systems and Computing, vol 1438. Springer, Cham. https://doi.org/10.1007/978-3-031-23636-5_48

Download citation

Publish with us

Policies and ethics