Abstract
According to classic physics, any solid object submerged in a fluid medium receives an buoyancy force equal to the weight of the fluid volume displaced by the submerged portion of the object. Even though there are solutions to simulate this phenomena, real-time buoyancy simulation models are an active research topic in Computer Graphics. In this paper, we present a new real-time method to simulate fluid-to-solid dynamics. The solution is competent for a broad generality of use cases. The technique is suitable to be implemented with GPGPU technologies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdulghany, A.R.: Generalization of parallel axis theorem for rotational inertia. Am. J. Phys. 85(10), 791–795 (2017). https://doi.org/10.1119/1.4994835
Akbay, M., Nobles, N., Zordan, V., Shinar, T.: An extended partitioned method for conservative solid-fluid coupling. ACM Trans. Graph. 37(4), 86:1–86:12 (2018). https://doi.org/10.1145/3197517.3201345. http://doi.acm.org/10.1145/3197517.3201345
Akinci, N., Ihmsen, M., Akinci, G., Solenthaler, B., Teschner, M.: Versatile rigid-fluid coupling for incompressible SPH. ACM Trans. Graph. 31(4), 62:1–62:8 (2012). https://doi.org/10.1145/2185520.2185558. http://doi.acm.org/10.1145/2185520.2185558
Bächer, M., Bickel, B., Whiting, E., Sorkine-Hornung, O.: Spin-it: optimizing moment of inertia for spinnable objects. Commun. ACM 60(8), 92–99 (2017). https://doi.org/10.1145/3068766. http://doi.acm.org/10.1145/3068766
Bajo, J.M., Delrieux, C., Patow, G.: Physically inspired technique for modeling wet absorbent materials. Vis. Comput. 37(8), 2053–2068 (2020). https://doi.org/10.1007/s00371-020-01963-w
Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2000). https://doi.org/10.1017/CBO9780511800955
Batty, C., Bertails, F., Bridson, R.: A fast variational framework for accurate solid-fluid coupling. ACM Trans. Graph. 26(3), 100 (2007). http://doi.acm.org/10.1145/1276377.1276502
Bridson, R.: Fluid Simulation for Computer Graphics, 2nd edn. Taylor & Francis (2015). https://books.google.es/books?id=7MySoAEACAAJ
Carlson, M., Mucha, P.J., Turk, G.: Rigid fluid: animating the interplay between rigid bodies and fluid. In: ACM SIGGRAPH 2004 Papers, SIGGRAPH 2004, pp. 377–384. ACM, New York (2004). https://doi.org/10.1145/1186562.1015733. http://doi.acm.org/10.1145/1186562.1015733
Da, F., Hahn, D., Batty, C., Wojtan, C., Grinspun, E.: Surface-only liquids. ACM Trans. Graph. 35(4), 78:1–78:12 (2016). https://doi.org/10.1145/2897824.2925899. http://doi.acm.org/10.1145/2897824.2925899
Fei, Y.R., Batty, C., Grinspun, E., Zheng, C.: A multi-scale model for simulating liquid-fabric interactions. ACM Trans. Graph. 37(4), 51:1–51:16 (2018). https://doi.org/10.1145/3197517.3201392. http://doi.acm.org/10.1145/3197517.3201392
Gonzalez-Ochoa, C.: Advances in real-time rendering in games: rendering rapids in uncharted 4. ACM SIGGRAPH 2016 courses. In: SIGGRAPH 2016: ACM SIGGRAPH 2016 Courses. ACM, New York (2016)
Guendelman, E., Selle, A., Losasso, F., Fedkiw, R.: Coupling water and smoke to thin deformable and rigid shells. ACM Trans. Graph. 24(3), 973–981 (2005). https://doi.org/10.1145/1073204.1073299. http://doi.acm.org/10.1145/1073204.1073299
Haas, A.E., Verschoyle, T.: Introduction to Theoretical Physics, 2nd edn. Constable & Company Ltd., London (1928)
Jeschke, S., Skřivan, T., Müller-Fischer, M., Chentanez, N., Macklin, M., Wojtan, C.: Water surface wavelets. ACM Trans. Graph. 37(4), 94:1–94:13 (2018). https://doi.org/10.1145/3197517.3201336. http://doi.acm.org/10.1145/3197517.3201336
Lenaerts, T., Adams, B., Dutré, P.: Porous flow in particle-based fluid simulations. ACM Trans. Graph. 27(3), 49:1–49:8 (2008). https://doi.org/10.1145/1360612.1360648. http://doi.acm.org/10.1145/1360612.1360648
Lu, W., Jin, N., Fedkiw, R.: Two-way coupling of fluids to reduced deformable bodies. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2016, pp. 67–76. Eurographics Association, Goslar Germany, Germany (2016). http://dl.acm.org/citation.cfm?id=2982818.2982829
Muskat, M., Wyckoff, R.: The Flow of Homogeneous Fluids Through Porous Media. International Series in Physics. McGraw-Hill Book Company, Incorporated (1937)
Patkar, S., Chaudhuri, P.: Wetting of porous solids. IEEE Trans. Vis. Comput. Graph. 19(9), 1592–1604 (2013). https://doi.org/10.1109/TVCG.2013.8
Robinson-Mosher, A., English, R.E., Fedkiw, R.: Accurate tangential velocities for solid fluid coupling. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2009, pp. 227–236. ACM, New York (2009). https://doi.org/10.1145/1599470.1599500. http://doi.acm.org/10.1145/1599470.1599500
Robinson-Mosher, A., Shinar, T., Gretarsson, J., Su, J., Fedkiw, R.: Two-way coupling of fluids to rigid and deformable solids and shells. ACM Trans. Graph. 27(3), 46:1–46:9 (2008). https://doi.org/10.1145/1360612.1360645. http://doi.acm.org/10.1145/1360612.1360645
Yaz, I.O., Loriot, S.: Triangulated surface mesh segmentation. In: CGAL User and Reference Manual, 4.13 edn. CGAL Editorial Board (2018). https://doc.cgal.org/4.13/Manual/packages.html#PkgSurfaceSegmentationSummary
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bajo, J.M., Patow, G., Delrieux, C. (2023). An Interactive Buoyancy Model for Procedural Animation and Rendering. In: Balas, V.E., Jain, L.C., Balas, M.M., Baleanu, D. (eds) Soft Computing Applications. SOFA 2020. Advances in Intelligent Systems and Computing, vol 1438. Springer, Cham. https://doi.org/10.1007/978-3-031-23636-5_48
Download citation
DOI: https://doi.org/10.1007/978-3-031-23636-5_48
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-23635-8
Online ISBN: 978-3-031-23636-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)