FRSM: A Novel Fault-Tolerant Approach for Redundant-Path-Enabled Service Migration in Mobile Edge Computing | SpringerLink
Skip to main content

FRSM: A Novel Fault-Tolerant Approach for Redundant-Path-Enabled Service Migration in Mobile Edge Computing

  • Conference paper
  • First Online:
Web Services – ICWS 2022 (ICWS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13736))

Included in the following conference series:

  • 496 Accesses

Abstract

Mobile Edge Computing (MEC) provides users with low-latency, highly responsive services by deploying Edge Servers (ESs) near applications. MEC allows any edge-hosted application or service to be migrated between different edge resource providers without being locked into a single provider. Nevertheless, due to its complexity and dynamics, the real edge computing environment is prone to errors and failures, reducing the reliability of edge service migration. This paper proposes a novel fault-tolerant method for redundant path service migration. The method utilizes sliding-window-based model and identifies a set of service migration paths, enabling the evaluation of the time-varying failure rate of ESs. The method combines resubmission and replication mechanisms and decides the edge service migration scheme by selecting multiple redundant migration paths. We also conduct extensive simulations and show that our proposed method outperforms traditional solutions in several metrics.

This work is supported by Postgraduate Scientific Research and Innovation Foundation of Chongqing under Grant No. CYB22064; This work is supported by National Science Foundations under Grant Nos. 6217206 and 62162036. This work is extended from our previous publication of https://doi.org/10.3390/app12199987.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6291
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7864
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It is a simplified version of the FRSM algorithm, where the failure rate of ESs is constant.

  2. 2.

    It is a traditional greedy algorithm, which first finds the current closest path and performs service migration based on the resubmission strategy.

References

  1. Weisong, S., Xingzhou, Z., Yifan, W., Qingyang, Z.: Edge computing: state-of-the-art and future directions. J. Comput. Res. Dev. 56(1), 69 (2019)

    Google Scholar 

  2. Hu, Y.C., Patel, M., Sabella, D., Sprecher, N., Young, V.: Mobile edge computing-a key technology towards 5g. ETSI white pap. 11(11), 1–16 (2015)

    Google Scholar 

  3. Deng, S., et al.: Toward mobile service computing: opportunities and challenges. IEEE Cloud Comput. 3(4), 32–41 (2016)

    Google Scholar 

  4. Wang, S., Urgaonkar, R., He, T., Chan, K., Zafer, M., Leung, K.K.: Dynamic service placement for mobile micro-clouds with predicted future costs. IEEE Trans. Parallel Distrib. Syst. 28(4), 1002–1016 (2016)

    Article  Google Scholar 

  5. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for VM-based cloudlets in mobile computing. IEEE Pervasive Comput. 8(4), 14–23 (2009)

    Article  Google Scholar 

  6. Pezoa, J.E., Dhakal, S., Hayat, M.M.: Maximizing service reliability in distributed computing systems with random node failures: theory and implementation. IEEE Trans. Parallel Distrib. Syst. 21(10), 1531–1544 (2010)

    Article  Google Scholar 

  7. Plankensteiner, K., Prodan, R.: Meeting soft deadlines in scientific workflows using resubmission impact. IEEE Trans. Parallel Distrib. Syst. 23(5), 890–901 (2011)

    Article  Google Scholar 

  8. Poola, D., Ramamohanarao, K., Buyya, R.: Enhancing reliability of workflow execution using task replication and spot instances. ACM Trans. Autonom. Adapt. Syst. (TAAS) 10(4), 1–21 (2016)

    Article  Google Scholar 

  9. Chen, W., Lee, Y.C., Fekete, A., Zomaya, A.Y.: Adaptive multiple-workflow scheduling with task rearrangement. J. Supercomput. 71(4), 1297–1317 (2015). https://doi.org/10.1007/s11227-014-1361-0

    Article  Google Scholar 

  10. Olteanu, A., Pop, F., Dobre, C., Cristea, V.: A dynamic rescheduling algorithm for resource management in large scale dependable distributed systems. Comput. Math. Appl. 63(9), 1409–1423 (2012)

    Article  MATH  Google Scholar 

  11. Cao, Y., Ro, C., Yin, J.: Scheduling Analysis of failure-aware VM in cloud system. Int. J. Control Autom. 7(1), 243–250 (2014)

    Article  Google Scholar 

  12. Jing, W., Liu, Y.: Multiple DAGs reliability model and fault-tolerant scheduling algorithm in cloud computing system. Comput. Model. New Technol. 18(8), 22–30 (2014)

    Google Scholar 

  13. Jayadivya, S.K., Nirmala, J.S., Bhanu, M.S.S.: Fault tolerant workflow scheduling based on replication and resubmission of tasks in cloud computing. Int. J. Comput. Sci. Eng. 4(6), 996 (2012)

    Google Scholar 

  14. Patra, P.K., Singh, H., Singh, R., Das, S., Dey, N., Victoria, A.D.C.: Replication and resubmission based adaptive decision for fault tolerance in real time cloud computing: a new approach. Int. J. Serv. Sci. Manage. Eng. Technol. (IJSSMET) 7(2), 46–60 (2016)

    Google Scholar 

  15. Plachy, J., Becvar, Z., Mach, P.: Path selection enabling user mobility and efficient distribution of data for computation at the edge of mobile network. Comput. Netw. 108, 357–370 (2016)

    Article  Google Scholar 

  16. Ha, K., et al.: Adaptive VM handoff across cloudlets. Technical Report CMU-CS-15-113 (2015)

    Google Scholar 

  17. Zhao, F., Zeng, X.: Optimization of user and operator cost for large-scale transit network. J. Transp. Eng. 133(4), 240–251 (2007)

    Article  MathSciNet  Google Scholar 

  18. Qiao, G., Leng, S., Maharjan, S., Zhang, Y., Ansari, N.: Deep reinforcement learning for cooperative content caching in vehicular edge computing and networks. IEEE Internet Things J. 7(1), 247–257 (2019)

    Article  Google Scholar 

  19. Peng, Q., Xia, Y., Wang, Y., Wu, C., Luo, X., Lee, J.: A decentralized reactive approach to online task offloading in mobile edge computing environments. In: Kafeza, E., Benatallah, B., Martinelli, F., Hacid, H., Bouguettaya, A., Motahari, H. (eds.) ICSOC 2020. LNCS, vol. 12571, pp. 232–247. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65310-1_18

    Chapter  Google Scholar 

  20. Long, T., Chen, P., Xia, Y., Jiang, N., Wang, X., Long, M.: A novel fault-tolerant approach to web service composition upon the edge computing environment. In: Xu, C., Xia, Y., Zhang, Y., Zhang, L.J. (eds.) Web Services – ICWS 2021. ICWS 2021. Lecture Notes in Computer Science, vol. 12994, pp. 15–31. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-96140-4_2

  21. Xu, J., Ma, X., Zhou, A., Duan, Q., Wang, S.: Path selection for seamless service migration in vehicular edge computing. IEEE Internet Things J. 7(9), 9040–9049 (2020)

    Article  Google Scholar 

  22. Jhawar, R., Piuri, V., Santambrogio, M.: Fault tolerance management in cloud computing: a system-level perspective. IEEE Syst. J. 7(2), 288–297 (2012)

    Article  Google Scholar 

  23. Plankensteiner, K., Prodan, R.: Meeting soft deadlines in scientific workflows using resubmission impact. IEEE Trans. Parallel Distrib. Syst. 23(5), 890–901 (2011)

    Article  Google Scholar 

  24. Yao, G., Ding, Y., Hao, K.: Using imbalance characteristic for fault-tolerant workflow scheduling in cloud systems. IEEE Trans. Parallel Distrib. Syst. 28(12), 3671–3683 (2017)

    Article  Google Scholar 

  25. Li, Y., Zhou, A., Ma, X., Wang, S.: Profit-aware edge server placement. IEEE Internet Things J. 9(1), 55–67 (2021)

    Article  Google Scholar 

  26. Guo, Y., Wang, S., Zhou, A., Xu, J., Yuan, J., Hsu, C.H.: User allocation-aware edge cloud placement in mobile edge computing. Softw. Pract. Experience 50(5), 489–502 (2020)

    Google Scholar 

  27. Wang, S., Guo, Y., Zhang, N., Yang, P., Zhou, A., Shen, X.: Delay-aware microservice coordination in mobile edge computing: a reinforcement learning approach. IEEE Trans. Mob. Comput. 20(3), 939–951 (2019)

    Article  Google Scholar 

  28. Liu, S., Liu, Y., Ni, L.M., Fan, J., Li, M.: Towards mobility-based clustering. In: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 919–928 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunni Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, J. et al. (2022). FRSM: A Novel Fault-Tolerant Approach for Redundant-Path-Enabled Service Migration in Mobile Edge Computing. In: Zhang, Y., Zhang, LJ. (eds) Web Services – ICWS 2022. ICWS 2022. Lecture Notes in Computer Science, vol 13736. Springer, Cham. https://doi.org/10.1007/978-3-031-23579-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23579-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23578-8

  • Online ISBN: 978-3-031-23579-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics