A Virtual Online Simulator Design for the Docking of Unmanned Underwater Vehicle | SpringerLink
Skip to main content

A Virtual Online Simulator Design for the Docking of Unmanned Underwater Vehicle

  • Conference paper
  • First Online:
Intelligent Autonomous Systems 17 (IAS 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 577))

Included in the following conference series:

Abstract

In this paper, a virtual online simulator is designed for the docking simulation task of Unmanned Underwater Vehicle (UUV), which provides an economic way to evaluate the reliability of related algorithms before the real underwater test. The host and lower computers are selected with several units’ design to send and receive the data via TCP/IP communication in the virtual online simulator. The host computer runs the simulink control program, which calculates the mathematical model, monitors the state of UUV, and simulates or interacts with the real sensor during the docking process. The host computer runs the unity simulation software, which obtains the data from the lower computer, and implements the navigation and control of the UUV. The virtual docking scene is designed to display the simulation of UUV on the screen, and four different navigation modes are designed to implement the experiment with motion verification and underwater docking for the UUV. The experiment results show that the designed virtual online simulator can achieve the simulation of docking task in a lower cost.

Supported by National Natural Science Foundation of China (Nos. 52075476 and 92048302).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 34319
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 42899
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, J., Chen, X., Yang, P.: Adaptive H-infinite Kalman filter based on multiple fading factors and its application in unmanned underwater vehicle. ISA Trans. 108, 295–304 (2021)

    Article  Google Scholar 

  2. Chen, Z., Li, C., Yao, B., Yuan, M., Yang, C.: Integrated coordinated/synchronized contouring control of a dual-linear-motor-driven gantry. IEEE Trans. Ind. Electron. 67(5), 3944–3954 (2020)

    Article  Google Scholar 

  3. Chen, Z., Huang, F., Yang, C., Yao, B.: Adaptive fuzzy backstepping control for stable nonlinear bilateral teleoperation manipulators with enhanced transparency performance. IEEE Trans. Ind. Electron. 67(1), 746–756 (2020)

    Article  Google Scholar 

  4. Sun, W., Tang, S., Gao, H., Zhao, J.: Two time-scale tracking control of nonholonomic wheeled mobile robots. IEEE Trans. Control Syst. Technol. 24(6), 2059–2069 (2016)

    Article  Google Scholar 

  5. Yao, J., Deng, W.: Active disturbance rejection adaptive control of hydraulic servo systems. IEEE Trans. Ind. Electron. 64(10), 8023–8032 (2017)

    Article  Google Scholar 

  6. Yuan, M., Chen, Z., Yao, B., Hu, J.: A general online trajectory planning framework in the case of desired function unknown in advance. IEEE Trans. Ind. Inf. 15(5), 2753–2762 (2019)

    Article  Google Scholar 

  7. Lin, C., Han, G., Du, J., Bi, Y., Shu, L., Fan, K.: A path planning scheme for AUV flock-based internet-of-underwater-things systems to enable transparent and smart ocean. IEEE Internet Things J. 7(10), 9760–9772 (2020)

    Article  Google Scholar 

  8. Mu, X., He, B., Wu, S., Zhang, X., Song, Y., Yan, T.: A practical INS/GPS/DVL/PS integrated navigation algorithm and its application on Autonomous Underwater Vehicle. Appl. Ocean Res. 106, 102441 (2021)

    Article  Google Scholar 

  9. Wang, T., Zhao, Q., Yang, C.: Visual navigation and docking for a planar type AUV docking and charging system. Ocean Eng. 224, 108744 (2021)

    Article  Google Scholar 

  10. Sahoo, A., Dwivedy, S.K., Robi, P.S.: Advancements in the field of autonomous underwater vehicle. Ocean Eng. 181, 145–160 (2019)

    Article  Google Scholar 

  11. Melo, J., Matos, A.: A survey on advances on terrain based navigation for autonomous underwater vehicles. Ocean Eng. 139, 250–264 (2017)

    Article  Google Scholar 

  12. Zhang, W., Teng, Y., Wei, S., Xiong, H., Ren, H.: The robust H-infinity control of UUV with Riccati equation solution interpolation. Ocean Eng. 156, 252–262 (2018)

    Article  Google Scholar 

  13. Qi, X., Xiang, P., Cai, Z.: Spatial target path following and coordinated control of multiple UUVs. Int. J. Naval Archit. Ocean Eng. 12, 832–842 (2020)

    Article  Google Scholar 

  14. Makavita, C.D., Jayasinghe, S.G., Nguyen, H.D., Ranmuthugala, D.: Experimental study of a command governor adaptive depth controller for an unmanned underwater vehicle. Appl. Ocean Res. 86, 61–72 (2019)

    Article  Google Scholar 

  15. Nagao, R., Matsumoto, K., Narumi, T., Tanikawa, T., Hirose, M.: Ascending and descending in virtual reality: simple and safe system using passive haptics. IEEE Trans. Visual Comput. Graphics 24(4), 1584–1593 (2018)

    Article  Google Scholar 

  16. Wang, Q., Jiao, W., Yu, R., Johnson, M.T., Zhang, Y.: Virtual reality robot-assisted welding based on human intention recognition. IEEE Trans. Autom. Sci. Eng. 17(2), 799–808 (2020)

    Article  Google Scholar 

  17. Faure, C., et al.: Adding haptic feedback to virtual environments with a cable-driven robot improves upper limb spatio-temporal parameters during a manual handling task. IEEE Trans. Neural Syst. Rehabil. Eng. 28(10), 2246–2254 (2020)

    Article  Google Scholar 

  18. Kluger, D.T., et al.: Virtual reality provides an effective platform for functional evaluations of closed-loop neuromyoelectric control. IEEE Trans. Neural Syst. Rehabil. Eng. 27(5), 876–886 (2019)

    Article  Google Scholar 

  19. Lipton, J.I., Fay, A.J., Rus, D.: Baxter’s homunculus: virtual reality spaces for teleoperation in manufacturing. IEEE Robot. Autom. Lett. 3(1), 179–186 (2018)

    Article  Google Scholar 

  20. Monferrer, A., Bonyuet, D.: Cooperative robot teleoperation through virtual reality interfaces. In: Proceedings Sixth International Conference on Information Visualisation, pp. 243–248 (2002)

    Google Scholar 

  21. de la Cruz, M., Casan, G.A., Sanz, P.J., Marín, R.: A new virtual reality interface for underwater intervention missions. IFAC-PapersOnLine 53(2), 14600–14607 (2020)

    Google Scholar 

  22. Bukhari, A.C., Kim, Y.G.: A research on an intelligent multipurpose fuzzy semantic enhanced 3D virtual reality simulator for complex maritime missions. Appl. Intell. 38(2), 193–209 (2013)

    Article  Google Scholar 

  23. Nie, Y., Luan, X., Gan, W., Ou, T., Song, D.: Design of marine virtual simulation experiment platform based on Unity3D. In: Global Oceans 2020: Singapore-U.S. Gulf Coast, pp. 1–5 (2020)

    Google Scholar 

  24. Wang, F., Wan, L., Su, Y., et al.: AUV modeling and motion control strategy design. J. Mar. Sci. Appl. 9, 379–385 (2010)

    Google Scholar 

  25. Kong, F., Guo, Y., Lyu, W.: Dynamics modeling and motion control of an new unmanned underwater vehicle. IEEE Access 8, 30119–30126 (2020)

    Article  Google Scholar 

Download references

Funding

This work is supported by Natural Science Foundation of Zhejiang Province (No. LR23E050001), National Natural Science Foundation of China (No. 52075476), Science Foundation of Donghai Laboratory (No. DH-2022KF01006), and Fundamental Research Funds for the Central Universities (2022FZZX01-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, F., Yan, T., Chen, Z. (2023). A Virtual Online Simulator Design for the Docking of Unmanned Underwater Vehicle. In: Petrovic, I., Menegatti, E., Marković, I. (eds) Intelligent Autonomous Systems 17. IAS 2022. Lecture Notes in Networks and Systems, vol 577. Springer, Cham. https://doi.org/10.1007/978-3-031-22216-0_55

Download citation

Publish with us

Policies and ethics